Bayesian joint-regression analysis of unbalanced series of on-farm trials - Département BAP INRAE
Preprints, Working Papers, ... Year : 2024

Bayesian joint-regression analysis of unbalanced series of on-farm trials

Analyse par régression conjointe bayésienne de séries d'essais à la ferme déséquilibrés

Abstract

Participatory plant breeding (PPB) is aimed at developing varieties adapted to agroecologically-based systems. In PPB, selection is decentralized in the target environments, and relies on collaboration between farmers, farmers' organisations and researchers. By doing so, evaluation of new genotypes takes genotype x environment (GxE) interactions into account to select for specific adaptation. In many cases, there is little overlap among genotypes assessed from farm to farm because the farmers participating in a PPB project choose which ones to assess on their farm. In addition, on-farm trials can often generate more extreme observations than trials carried out on research stations. These features make the estimation of genotype, environment and interaction effects more difficult. This challenge is not unique to PPB, as many breeding programs use sparse testing or incomplete block designs to evaluate more genotypes, however in PPB genotypes are not always assigned randomly to environments. To explore methods of overcoming these challenges, this article tests various data analysis scenarios using a Bayesian approach with different models and a real wheat PPB dataset over 11 years. Four morpho-agronomic traits were studied, representing over 1000 GxE combinations from 189 on-farm trials. This dataset was severely unbalanced with more than 90% of GxE combinations missing. We compared various Bayesian Finlay-Wilkinson models and found that placing hierarchical distributions on model parameters and modelling residuals using a Student's t distribution jointly improved the estimates of main effects and interactions. Environment effects were the most important and explained more than 50% of the variance of observations. This statistical framework allowed us to estimate two indicators of genotype stability (one static and one dynamic) despite the high disequilibrium of the data. We found differences in mean and stability as between genotype categories, with registred varieties consistently shorter (-30 cm) and containing less protein (-0.3%) than other types of varieties. The methods developed could be used for evaluation and/or selection within networks of various stakeholders such as farmers, gardeners, plant breeders or managers of genetic resource centres.
La sélection participative des plantes (SPP) vise à développer des variétés adaptées aux systèmes agroécologiques. Dans ce cadre, la sélection est décentralisée dans les environnements cibles et repose sur la collaboration entre les agriculteurs, les organisations paysannes et les chercheurs. Ce faisant, l'évaluation des nouveaux génotypes prend en compte les interactions génotype x environnement (GxE) pour sélectionner une adaptation spécifique. Dans de nombreux cas, il y a peu de chevauchement entre les génotypes évalués d'une exploitation à l'autre, car les agriculteurs participant à un projet de SPP choisissent ceux qu'ils souhaitent évaluer dans leur ferme. En outre, les essais dans les fermes peuvent souvent générer des observations plus extrêmes que les essais réalisés dans les stations de recherche. Ces caractéristiques rendent plus difficile l'estimation des effets du génotype, de l'environnement et de l'interaction. Ce défi n'est pas propre à la SPP, car de nombreux programmes de sélection utilisent des essais épars ou des plans en blocs incomplets pour évaluer un plus grand nombre de génotypes, mais en SPP, les génotypes ne sont pas toujours assignés de manière aléatoire aux environnements. Afin d'explorer les méthodes permettant de surmonter ces difficultés, cet article teste divers scénarios d'analyse de données en utilisant une approche bayésienne avec différents modèles et un ensemble de données réelles issu de SPP du blé sur une période de 11 ans. Quatre traits morpho-agronomiques ont été étudiés, représentant plus de 1000 combinaisons GxE provenant de 189 essais en ferme. Cet ensemble de données était gravement déséquilibré, plus de 90 % des combinaisons GxE étant manquantes. Nous avons comparé divers modèles bayésiens de Finlay-Wilkinson et constaté que le fait de placer des distributions hiérarchiques sur les paramètres du modèle et de modéliser les résidus à l'aide d'une distribution t de Student améliorait conjointement les estimations des effets principaux et des interactions. Les effets de l'environnement étaient les plus importants et expliquaient plus de 50 % de la variance des observations. Ce cadre statistique nous a permis d'estimer deux indicateurs de la stabilité des génotypes (un statique et un dynamique) malgré le déséquilibre élevé des données. Nous avons trouvé des différences de moyenne et de stabilité entre les catégories de génotypes, les variétés au catalogue étant systématiquement plus courtes (-30 cm) et contenant moins de protéines (-0,3%) que les autres types de variétés. Les méthodes développées pourraient être utilisées pour l'évaluation et/ou la sélection au sein de réseaux de différents acteurs tels que les agriculteurs, les jardiniers, les sélectionneurs ou les gestionnaires de centres de ressources génétiques.
Fichier principal
Vignette du fichier
FWHS_v2.pdf (1.37 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04380787 , version 1 (08-01-2024)
hal-04380787 , version 2 (30-09-2024)

Licence

Identifiers

  • HAL Id : hal-04380787 , version 2

Cite

Michel Turbet Delof, Pierre Rivière, Julie C Dawson, Arnaud Gauffreteau, Isabelle Goldringer, et al.. Bayesian joint-regression analysis of unbalanced series of on-farm trials. 2024. ⟨hal-04380787v2⟩
347 View
97 Download

Share

More