Preserving polarimetric properties in PolSAR image reconstruction through Complex-Valued Auto-Encoders - DOTA ONERA
Communication Dans Un Congrès Année : 2024

Preserving polarimetric properties in PolSAR image reconstruction through Complex-Valued Auto-Encoders

Préservation des propriétés polarimétriques dans la reconstruction d'images PolSAR grâce à des autocodeurs à valeurs complexes

Résumé

The complex-valued nature of Polarimetric SAR data requires dedicated algorithms that can deal with complex-valued representations. This approach needs to be studied more in the deep learning community, where several works instead transformed the complex-valued signals into the real domain before applying standard real-valued algorithms. In this paper, we employ complex-valued neural networks and study the performance of complex-valued convolutional autoencoders. We demonstrate the ability of such networks to compress fully polarimetric SAR data and decompress them by preserving critical physical properties as revealed by the Pauli and Krogager coherent decompositions and the non-coherent $H-\alpha$ decomposition.
Fichier sous embargo
Fichier sous embargo
0 3 26
Année Mois Jours
Avant la publication
lundi 21 avril 2025
Fichier sous embargo
lundi 21 avril 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04785702 , version 1 (15-11-2024)

Identifiants

  • HAL Id : hal-04785702 , version 1

Citer

Quentin Gabot, Jérémy Fix, Joana Frontera-Pons, Chengfang Ren, Jean-Philippe Ovarlez. Preserving polarimetric properties in PolSAR image reconstruction through Complex-Valued Auto-Encoders. RADAR 2024, Oct 2024, Rennes, France. ⟨hal-04785702⟩
1 Consultations
0 Téléchargements

Partager

More