Comparative study of minutiae selection methods for digital fingerprints - GREYC monebiom
Article Dans Une Revue Frontiers in Big Data Année : 2023

Comparative study of minutiae selection methods for digital fingerprints

Résumé

Biometric systems are more and more used for many applications (physical access control, e-payment, etc.). Digital fingerprint is an interesting biometric modality as it can easily be used for embedded systems (smartcard, smartphone, and smartwatch). A fingerprint template is composed of a set of minutiae used for their comparison. In embedded systems, a secure element is in general used to store and compare fingerprint templates to meet security and privacy requirements. Nevertheless, it is necessary to select a subset of minutiae from a template due to storage and computation constraints. In this study, we present, a comparative study of the main minutiae selection methods from the literature. The considered methods require no further information like the raw image. Experimental results show their relative performance when using different matching algorithms and datasets. We identified that some methods can be used within different contexts (enrollment or verification) with minimal degradation of performance.
Fichier principal
Vignette du fichier
fdata-06-1146034 (1).pdf (1.48 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04094215 , version 1 (27-05-2024)

Licence

Identifiants

Citer

Benoit Vibert, Jean-Marie Le Bars, Christophe Charrier, Christophe Rosenberger. Comparative study of minutiae selection methods for digital fingerprints. Frontiers in Big Data, 2023, 6, ⟨10.3389/fdata.2023.1146034⟩. ⟨hal-04094215⟩
95 Consultations
0 Téléchargements

Altmetric

Partager

More