Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions - Combinatoire, théorie des nombres
Article Dans Une Revue Journal de l'École polytechnique — Mathématiques Année : 2021

Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions

Carlos E Arreche
  • Fonction : Auteur
Julien Roques

Résumé

We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations, q-dilation difference equations, Mahler difference equations, and elliptic difference equations. These criteria are obtained as an application of differential Galois theory for difference equations. We apply our criteria to prove a new result to the effect that most elliptic hypergeometric functions are differentially transcendental.
Fichier principal
Vignette du fichier
final-ellhypergeo.pdf (422.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03361384 , version 1 (01-10-2021)

Identifiants

Citer

Carlos E Arreche, Thomas Dreyfus, Julien Roques. Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions. Journal de l'École polytechnique — Mathématiques, 2021, 8, pp.147-168. ⟨10.5802/jep.143⟩. ⟨hal-03361384⟩
69 Consultations
62 Téléchargements

Altmetric

Partager

More