Bioinspired Electro-Thermo-Hygro Reversible Shape-Changing Materials by 4D Printing - IRDL_UBS
Article Dans Une Revue Advanced Functional Materials Année : 2019

Bioinspired Electro-Thermo-Hygro Reversible Shape-Changing Materials by 4D Printing

Résumé

Hygromorph composites are moisture-induced shape-changing materials that are increasingly studied to develop autonomously actuated deployable structures. The morphing mechanism is based on the high affinity for moisture and the hygroexpansive nature of at least one component, combined with a bilayer microstructure. Among available hygromorphs, those consisting of cellulosic or hydrogel material-based actuators trigger fast responses to moisture. Their stiffness however decreases significantly with the moisture content and that restricts their potential application as soft actuators. This work proposes a novel 4D printed multistimuli-responsive structural material based on conductive carbon reinforcements and combined with a moisture sensitive polymer. These 4D printed materials possess a microstructure that provides the capability of natural actuators like pine cones. The actuation of these functional materials could be either triggered passively by the variation of the ambient moisture, or by electroheating, with the latter leading to the control of the moisture content in initially wet samples via Joule effects. This new class of functional materials shows an increase of the actuation speed by a factor 10 compared to other existing hygromorphs with the same responsiveness. When the electrical heating is turned off, passive cooling and moisture driven actuation is triggered in a full reversible mode.

Domaines

Matériaux
Fichier principal
Vignette du fichier
2019_06_03_Article_4D_Final_manuscript_003_.pdf (3.75 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04589372 , version 1 (27-05-2024)

Licence

Identifiants

Citer

Antoine Le Duigou, Guillaume Chabaud, Fabrizio Scarpa, Mickaël Castro. Bioinspired Electro-Thermo-Hygro Reversible Shape-Changing Materials by 4D Printing. Advanced Functional Materials, 2019, 29 (40), pp.1903280. ⟨10.1002/adfm.201903280⟩. ⟨hal-04589372⟩
11 Consultations
15 Téléchargements

Altmetric

Partager

More