- Home

[...]

[...]

[...]

[...]

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

The optical spectra of two-dimensional (2D) periodic systems provide a challenge for time-dependent density-functional theory (TDDFT) because of the large excitonic effects in these materials. In this work we explore how accurately these spectra can be described within a pure Kohn-Sham time-dependent density-functional framework, i.e., a framework in which no theory beyond Kohn-Sham density-functional theory, such as $GW$, is required to correct the Kohn-Sham gap. To achieve this goal we adapted a recent approach we developed for the optical spectra of 3D systems [Cavo, Berger, Romaniello, Phys. Rev. B 101, 115109 (2020)] to those of 2D systems. Our approach relies on the link between the exchange-correlation kernel of TDDFT and the derivative discontinuity of ground-state density-functional theory, which guarantees a correct quasi-particle gap, and on a generalization of the polarization functional [Berger, Phys. Rev. Lett., 115, 137402 (2015)], which describes the excitonic effects. We applied our approach to two prototypical 2D monolayers, $h$-BN and MoS$_2$. We find that our protocol gives a qualitative good description of the optical spectrum of $h$-BN, whereas improvements are needed for MoS$_2$ to describe the intensity of the excitonic peaks.

[...]

Aiming at completing the sets of FCI-quality transition energies that we recently developed (

[...]

Context. Line shapes of the magnesium resonance lines in white dwarf spectra are determined by the properties of magnesium atoms and the structure of the white dwarf atmosphere. Through their blanketing effect, these lines have a dominant influence on the model structure and thus on the determination from the spectra of other physical parameters that describe the stellar atmosphere and elemental abundances.Aims. In continuation of previous work on Mg+He lines in the UV, we present theoretical profiles of the resonance line of neutral Mg perturbed by He at the extreme density conditions found in the cool largely transparent atmosphere of DZ white dwarfs.Methods. We accurately determined the broadening of Mg by He in a unified theory of collisional line profiles using ab initio calculations of MgHe potential energies and transition matrix elements among the singlet electronic states that are involved for the observable spectral lines.Results. We computed the shapes and line parameters of the Mg lines and studied their dependence on helium densities and temperatures. We present results over the full range of temperatures from 4000 to 12 000 K needed for input to stellar spectra models. Atmosphere models were constructed for a range of effective temperatures and surface gravities typical for cool DZ white dwarfs. We present synthetic spectra tracing the behavior of the Mg resonance line profiles under the low temperatures and high gas pressures prevalent in these atmospheres.Conclusions. The determination of accurate opacity data of magnesium resonance lines together with an improved atmosphere model code lead to a good fit of cool DZ white dwarf stars. The broadening of spectral lines by helium needs to be understood to accurately determine the H/He and Mg/He abundance ratio in DZ white dwarf atmospheres. We emphasize that no free potential parameters or ad hoc adjustments were used to calculate the line profiles.

The Bethe-Salpeter equation (BSE) formalism is a computationally affordable method for the calculation of accurate optical excitation energies in molecular systems. Similar to the ubiquitous adiabatic approximation of time-dependent density-functional theory, the static approximation, which substitutes a dynamical (\ie, frequency-dependent) kernel by its static limit, is usually enforced in most implementations of the BSE formalism. Here, going beyond the static approximation, we compute the dynamical correction of the electron-hole screening for molecular excitation energies thanks to a renormalized first-order perturbative correction to the static BSE excitation energies. The present dynamical correction goes beyond the plasmon-pole approximation as the dynamical screening of the Coulomb interaction is computed exactly within the random-phase approximation. Our calculations are benchmarked against high-level (coupled-cluster) calculations, allowing to assess the clear improvement brought by the dynamical correction for both singlet and triplet optical transitions.

Following the recent work of Eriksen et al. [arXiv:2008.02678], we report the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method on the non-relativistic frozen-core correlation energy of the benzene molecule in the cc-pVDZ basis. Following our usual protocol, we obtain a correlation energy of $-863.4(5)$ m$E_h$ which agrees with the theoretical estimate of $-863$ m$E_h$ proposed by Eriksen et al. using an extensive array of highly-accurate new electronic structure methods.

Spin-orbit interactions 3115ag Time-dependent density-functional theory Charge transfer state Beyond Standard Model Electron correlation Biodegradation Calcul ab initio Anderson mechanism Corrélation électronique Polarizabilities CIPSI Argile 3315Fm Density functional theory Argon Carbon Nanotubes Atrazine Configuration interaction AROMATIC-MOLECULES New physics Benchmarks Aimantation Time reversal violation BENZENE MOLECULE Acrolein CP violation Azide Anion Range separation Basis sets Coupled cluster calculations Atomic and molecular structure and dynamics Clay mineral 3115am Atrazine-cations complexes 3115ae Chiral oxorhenium Valence bond 3470+e Molecular properties Petascale Parity violation Dispersion coefficients Chemical concepts Quantum Chemistry Conditions aux limites périodiques Cluster coupling Chiral transition metal complexes CLUSTERS Diatomic molecules Abiotic degradation 3115vj Boys Relativistic quantum chemistry Numerical calculations CP Violation BIOMOLECULAR HOMOCHIRALITY AB-INITIO Line formation Electron electric moment COMPUTATION Large systems Pesticide Xenon 3115aj Béryllium Circular dichroism 3115vn CHEMICAL-SHIFTS Benzene Hyperfine structure Quantum Monte Carlo Perturbation theory ALGORITHM Atom Charge conjugation symmetry Chemical-Bonds Atomic data Ground states Configuration interactions Brown dwarfs 3115bw Car-Parrinello molecular dynamics Configuration state functions Excited states Parallel speedup Complex plane Single-core optimization Analytic gradient Atomic processes Ab initio calculation AB-INITIO CALCULATION Chiral halogenomethanes Chemical Physics Pesticides Metabolites Clustering Molecular modeling Environmental fate Partial least squares Wave functions Relativistic corrections Diffusion Monte Carlo Chimie quantique Configuration Interaction