Divsets, numerical semigroups and Wilf's conjecture - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville
Pré-Publication, Document De Travail (Working Paper) Année : 2023

Divsets, numerical semigroups and Wilf's conjecture

Résumé

Let $S \subseteq \N$ be a numerical semigroup with multiplicity $m = \min(S \setminus \{0\})$ and conductor $c=\max(\Z \setminus S)+1$. Let $P$ be the set of primitive elements, i.e. minimal generators, of $S$, and let $L$ be the set of elements of $S$ which are smaller than $c$. Wilf's conjecture (1978) states that the inequality $|P||L| \ge c$ must hold. The conjecture has been shown to hold in case $|P| \ge m/2$ by Sammartano in 2012, and subsequently in case $|P| \ge m/3$ by the author in 2020. The main result in this paper is that Wilf's conjecture holds in case $|P| \ge m/4$ if $m$ divides $c$. The proof uses \emph{divsets} $X$, i.e. finite divisor-closed sets of monomials, as abstract models of numerical semigroups, and proceeds with estimates of the vertex-maximal matching number of the associated graph $G(X)$.
Fichier principal
Vignette du fichier
divsetsR1.pdf (225.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04234167 , version 1 (09-10-2023)
hal-04234167 , version 2 (28-11-2023)
hal-04234167 , version 3 (06-02-2024)
hal-04234167 , version 4 (24-04-2024)
hal-04234167 , version 5 (29-10-2024)

Identifiants

Citer

Shalom Eliahou. Divsets, numerical semigroups and Wilf's conjecture. 2024. ⟨hal-04234167v5⟩
328 Consultations
134 Téléchargements

Altmetric

Partager

More