Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites - CIS / STBio : Surfaces et Tissus Biologiques
Article Dans Une Revue Acta Biomaterialia Année : 2020

Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites

Baptiste Charbonnier
  • Fonction : Auteur
  • PersonId : 785349
  • IdRef : 203113462
Mathieu Manaserro
Marianne Bourguignon
Adeline Decambron
  • Fonction : Auteur
Hanane El-Hafci
Claire Morin
Diego Leon
  • Fonction : Auteur
Morad Bensidoum
  • Fonction : Auteur
Simon Corsia
  • Fonction : Auteur
Hervé Petite
David Marchat
  • Fonction : Auteur
  • PersonId : 917665

Résumé

The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triplyperiodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro-to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants.
Fichier principal
Vignette du fichier
Charbonnier20_TPMS.pdf (1.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03031166 , version 1 (30-11-2020)

Identifiants

Citer

Baptiste Charbonnier, Mathieu Manaserro, Marianne Bourguignon, Adeline Decambron, Hanane El-Hafci, et al.. Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomaterialia, 2020, 109, pp.254-266. ⟨10.1016/j.actbio.2020.03.016⟩. ⟨hal-03031166⟩
237 Consultations
482 Téléchargements

Altmetric

Partager

More