C. Anders, K. Bargsten, and M. Jinek, Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9, 2016.

, Mol. Cell, vol.61, pp.895-902

M. Andrade, Y. Abe, K. S. Nakahara, and I. Uyeda, The cyv-2 resistance to Clover yellow vein virus in pea is controlled by the eukaryotic initiation factor 4E, J. Gen. Plant Pathol, vol.75, pp.241-249, 2009.

J. A. Ashby, C. E. Stevenson, G. E. Jarvis, D. M. Lawson, and A. J. Maule, Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea, PLoS ONE, vol.6, p.15873, 2011.

A. Bastet, C. Robaglia, and J. L. Gallois, 2017) eIF4E resistance: natural variation should guide gene editing, Trends Plant Sci, vol.22, pp.411-419

A. Bastet, B. Lederer, N. Giovinazzo, X. Arnoux, S. German-retana et al., Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants, Plant Biotechnol. J, vol.16, pp.1569-1581, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852177

V. M. Borrelli, V. Brambilla, P. Rogowsky, A. Marocco, and A. Lanubile, The enhancement of plant disease resistance using CRISPR/Cas9 technology, Front. Plant Sci, vol.9, p.1245, 2018.

M. Brozynska, A. Furtado, and R. J. Henry, Genomics of crop wild relatives: expanding the gene pool for crop improvement, Plant Biotechnol. J, vol.14, pp.1070-1085, 2016.

C. Callot, J. L. Gallois, J. R. Cavatorta, A. E. Savage, I. Yeam et al., Pyramiding resistances based on translation initiation factors in Arabidopsis is impaired by male gametophyte lethality, Plant Signal. Behav, vol.9, pp.551-559, 2008.

J. Chandrasekaran, M. Brumin, D. Wolf, D. Leibman, C. Klap et al., Development of broad virus resistance in nontransgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol, vol.17, pp.1140-1153, 2016.

C. Charron, M. Nicola?-i, J. L. Gallois, C. Robaglia, B. Moury et al., Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg, Plant J, vol.54, pp.56-68, 2008.

Y. Chen, Z. Wang, H. Ni, Y. Xu, Q. Chen et al., CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis, Sci. China Life Sci, vol.60, pp.520-523, 2017.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

M. D. Curtis and U. Grossniklaus, A gateway cloning vector set for highthroughput functional analysis of genes in planta, Plant Physiol, vol.133, pp.462-469, 2003.

C. Desbiez and H. Lecoq, The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5 0 part of the genome, Arch. Virol, vol.149, pp.1619-1632, 2004.

A. Duprat, C. Caranta, F. Revers, B. Menand, K. S. Browning et al., The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses, Plant J, vol.32, pp.927-934, 2002.

A. Eid, S. Alshareef, and M. M. Mahfouz, CRISPR base editors: genome editing without double-stranded breaks, Biochem. J, vol.475, pp.1955-1964, 2018.

D. Eisenberg, R. M. Weiss, and T. C. Terwilliger, The hydrophobic moment detects periodicity in protein hydrophobicity, Proc. Natl Acad. Sci. USA, vol.81, pp.140-144, 1984.

K. Eskelin, A. Hafr-en, K. I. Rantalainen, and K. M?-akinen, Potyviral VPg enhances viral RNA translation and inhibits reporter mRNA translation in planta, J. Virol, vol.85, pp.9210-9221, 2011.

J. Estevan, A. Mar-ena, C. Callot, S. Lacombe, A. Moretti et al., Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to Tobacco etch virus, BMC Plant Biol, vol.14, p.67, 2014.

S. A. Ferreira, K. Y. Pitz, R. Manshardt, F. Zee, M. Fitch et al., Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii, Plant Dis, vol.86, pp.101-105, 2002.

J. L. Gallois, C. Charron, F. Sanchez, G. Pagny, M. C. Houvenaghel et al., Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G, J. Gen. Virol, vol.91, pp.288-293, 2010.

Z. Gao, S. Eyers, C. Thomas, N. Ellis, and A. Maule, Identification of markers tightly linked to sbm recessive genes for resistance to Pea seed-borne mosaic virus, Theor. Appl. Genet, vol.109, pp.488-494, 2004.

Z. Gao, E. Johansen, S. Eyers, C. L. Thomas, T. H. Ellis et al., The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking, Plant J, vol.40, pp.376-385, 2004.

, The Authors, Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists, pp.1-15, 2019.

N. M. Gaudelli, A. C. Komor, H. A. Rees, M. S. Packer, A. H. Badran et al., Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage, Nature, vol.551, pp.464-471, 2017.

C. Gauffier, C. Lebaron, A. Moretti, C. Constant, F. Moquet et al., A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy, Plant J, vol.85, pp.717-729, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314164

S. German-retana, J. Walter, B. Doublet, G. Roudet-tavert, V. Nicaise et al., Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection, J. Virol, vol.82, pp.7601-7612, 2008.

M. A. Gomez, Z. D. Lin, T. Moll, R. D. Chauhan, L. Hayden et al., Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence, Plant Biotechnol. J, vol.17, pp.421-434, 2018.

A. Hafr-en, K. Eskelin, and K. M?-akinen, Ribosomal protein P0 promotes Potato virus A infection and functions in viral translation together with VPg and eIF(iso)4E, J. Virol, vol.87, pp.4302-4312, 2013.

M. R. Hajimorad, L. L. Domier, S. A. Tolin, S. A. Whitham, and M. A. Saghai-maroof, Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range, Mol. Plant Pathol, vol.19, pp.1563-1579, 2018.

M. Hashimoto, Y. Neriya, Y. Yamaji, and S. Namba, Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors, Front. Microbiol, vol.7, p.1695, 2016.

G. T. Hess, J. Tycko, D. Yao, and M. C. Bassik, Methods and applications of CRISPR-mediated base editing in eukaryotic genomes, Mol. Cell, vol.68, pp.26-43, 2017.

J. H. Hu, S. M. Miller, M. H. Geurts, W. Tang, L. Chen et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity, Nature, vol.556, pp.57-63, 2018.

P. Jacob, A. Avni, and A. Bendahmane, Translational research: exploring and creating genetic diversity, Trends Plant Sci, vol.23, pp.42-52, 2018.

H. Kaya, M. Mikami, A. Endo, M. Endo, and S. Toki, Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9, Sci. Rep, vol.6, p.26871, 2016.

J. Kim, W. H. Kang, J. Hwang, H. B. Yang, K. Dosun et al., Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance, Mol. Plant Pathol, vol.15, pp.615-626, 2014.

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage, Nature, vol.533, pp.420-424, 2016.

T. Langner, S. Kamoun, and K. Belhaj, CRISPR crops: plant genome editing toward disease resistance, Annu. Rev. Phytopathol, vol.56, pp.479-512, 2018.

C. Lebaron, A. Rosado, C. Sauvage, C. Gauffier, S. German-retana et al., A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability, J. Gen. Virol, vol.97, pp.3063-3072, 2016.

A. D. Lellis, K. D. Kasschau, S. A. Whitham, and J. C. Carrington, Loss-ofsusceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso)4E during potyvirus infection, Curr. Biol, vol.12, pp.1046-1051, 2002.

S. L-eonard, D. Plante, S. Wittmann, N. Daigneault, M. G. Fortin et al., Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity, J. Virol, vol.74, pp.7730-7737, 2000.

J. Li, Y. Sun, J. Du, Y. Zhao, and L. Xia, Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system, Mol. Plant, vol.10, pp.526-529, 2017.

C. Li, Y. Zong, Y. Wang, S. Jin, D. Zhang et al., Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion, Genome Biol, vol.19, p.59, 2018.

Y. Lu and J. K. Zhu, Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system, Mol. Plant, vol.10, pp.523-525, 2017.

M. Mazier, F. Flamain, M. Nicola?-i, V. Sarnette, and C. Caranta, Knockdown of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato, PLoS ONE, vol.6, p.29595, 2011.

T. Michon, Y. Estevez, J. Walter, S. German-retana, L. Gall et al., The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue, FEBS J, vol.273, pp.1312-1322, 2006.

A. F. Monzingo, S. Dhaliwal, A. Dutt-chaudhuri, A. Lyon, J. H. Sadow et al., The structure of eukaryotic translation initiation factor-4E from wheat reveals a novel disulfide bond, Plant Physiol, vol.143, pp.1504-1518, 2007.

B. Moury, C. Charron, B. Janzac, V. Simon, J. L. Gallois et al., Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): a game of mirrors impacting resistance spectrum and durability, Infect. Genet. Evol, vol.27, pp.472-480, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268508

J. Murovec, Z. Pirc, and B. Yang, New variants of CRISPR RNA-guided genome editing enzymes, Plant Biotechnol. J, vol.15, pp.917-926, 2017.

V. Nicaise, S. German-retana, R. Sanjuan, M. P. Dubrana, M. Mazier et al., The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus, Plant Physiol, vol.132, pp.1272-1282, 2003.

K. Nishida, T. Arazoe, N. Yachie, S. Banno, M. Kakimoto et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, vol.353, pp.1259-1262, 2016.

M. G. Palmgren, A. K. Edenbrandt, S. E. Vedel, M. M. Andersen, X. Landes et al., Are we ready for back-to-nature crop breeding?, Trends Plant Sci, vol.20, pp.155-164, 2015.

B. L. Patil, J. P. Legg, E. Kanju, and C. M. Fauquet, Cassava brown streak disease: a threat to food security in Africa, J. Gen. Virol, vol.96, pp.956-968, 2015.

R. M. Patrick and K. S. Browning, The eIF4F and eIFiso4F complexes of plants: an evolutionary perspective, Comp. Funct. Genomics, p.287814, 2012.

S. Pavan, E. Jacobsen, R. G. Visser, and Y. Bai, Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance, Mol. Breed, vol.25, pp.1-12, 2010.

F. Piron, M. Nicola?-i, S. Mino?-ia, E. Piednoir, A. Moretti et al., An induced mutation in tomato eIF4E leads to immunity to two potyviruses, PLoS ONE, vol.5, p.11313, 2010.

N. Poulicard, L. F. Pacios, J. L. Gallois, D. Pi~-nero, F. Garc-ia-arenal et al., Human management of a wild plant modulates the evolutionary dynamics of a gene determining recessive resistance to virus infection, Mol. Plant Pathol, vol.12, pp.1276-1288, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374695

C. Rey and H. Vanderschuren, Cassava mosaic and brown streak diseases: current perspectives and beyond, Annu. Rev. Virol, vol.4, pp.429-452, 2017.

C. Robaglia and C. Caranta, Translation initiation factors: a weak link in plant RNA virus infection, Trends Plant Sci, vol.11, pp.40-45, 2006.

S. Ruffel, M. H. Dussault, A. Palloix, B. Moury, A. Bendahmane et al., A natural recessive resistance gene against potato virus Y, 2002.
DOI : 10.1046/j.1365-313x.2002.01499.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.2002.01499.x

, Plant J, vol.32, pp.1067-1075

S. Ruffel, J. L. Gallois, M. L. Lesage, and C. Caranta, The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene, Mol. Genet. Genomics, vol.274, pp.346-353, 2005.

S. Ruffel, J. L. Gallois, B. Moury, C. Robaglia, A. Palloix et al., Simultaneous mutations in translation initiation factors eIF4E and eIF (iso)4E are required to prevent pepper veinal mottle virus infection of pepper, 2006.

, J. Gen. Virol, vol.87, pp.2089-2098

M. Sato, K. Nakahara, M. Yoshii, M. Ishikawa, and I. Uyeda, Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses, FEBS Lett, vol.579, pp.1167-1171, 2005.

C. C. Schie and F. L. Takken, Susceptibility genes 101: how to be a good host, Annu. Rev. Phytopathol, vol.52, pp.551-581, 2014.

Z. Shimatani, S. Kashojiya, M. Takayama, R. Terada, T. Arazoe et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nat. Biotechnol, vol.35, pp.441-443, 2017.

Z. Shimatani, U. Fujikura, H. Ishii, R. Terada, K. Nishida et al., Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice, Data Brief, vol.20, pp.1325-1331, 2018.
DOI : 10.1016/j.dib.2018.08.124

URL : https://doi.org/10.1016/j.dib.2018.08.124

, The Authors, Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists, pp.1-15, 2019.

P. Sikora, A. Chawade, M. Larsson, J. Olsson, and O. Olsson, Mutagenesis as a tool in plant genetics, functional genomics, and breeding, Int. J. Plant Genomics, p.314829, 2011.
DOI : 10.1155/2011/314829

URL : http://downloads.hindawi.com/archive/2011/314829.pdf

N. Stein, D. Perovic, J. Kumlehn, B. Pellio, S. Stracke et al., The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.), Plant J, vol.42, pp.912-922, 2005.
DOI : 10.1111/j.1365-313x.2005.02424.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2005.02424.x

J. Steinert, S. Schiml, F. Fauser, and H. Puchta, Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus, Plant J, vol.84, pp.1295-1305, 2015.
DOI : 10.1111/tpj.13078

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/tpj.13078

Y. Takahashi, T. Takahashi, and I. Uyeda, A cDNA clone to clover yellow vein potyvirus genome is highly infectious, Virus Genes, vol.14, pp.235-243, 1997.

S. Tian, L. Jiang, X. Cui, J. Zhang, S. Guo et al., Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing, Plant Cell Rep, vol.37, pp.1353-1356, 2018.
DOI : 10.1007/s00299-018-2299-0

X. Wang, S. E. Kohalmi, A. Svircev, A. Wang, H. Sanfac-ßon et al., Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum, PLoS ONE, vol.8, p.50627, 2013.

M. Wang, Y. Mao, Y. Lu, Z. Wang, X. Tao et al., Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems, J. Integr. Plant Biol, vol.60, pp.626-631, 2018.
DOI : 10.1111/jipb.12667

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/jipb.12667

S. Wittmann, H. Chatel, M. G. Fortin, and J. F. Lalibert-e, Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system, Virology, vol.234, pp.84-92, 1997.

R. Xu, Y. Yang, R. Qin, H. Li, C. Qiu et al., Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice, J. Genet. Genomics, vol.43, pp.529-532, 2016.
DOI : 10.1016/j.jgg.2016.07.003

P. Yang, A. Habekuß, B. J. Hofinger, K. Kanyuka, B. Kilian et al., Sequence diversification in recessive alleles of two host factor genes suggests adaptive selection for bymovirus resistance in cultivated barley from, East Asia. Theor. Appl. Genet, vol.130, pp.331-344, 2017.

I. Yeam, J. R. Cavatorta, D. R. Ripoll, B. C. Kang, and M. M. Jahn, Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants, Plant Cell, vol.19, pp.2913-2928, 2007.

S. S. Zaidi, M. S. Mukhtar, and S. Mansoor, Genome editing: targeting susceptibility genes for plant disease resistance, Trends Biotechnol, vol.36, pp.898-906, 2018.
DOI : 10.1016/j.tibtech.2018.04.005

H. Zhang, N. Mittal, L. J. Leamy, O. Barazani, and B. H. Song, Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement, Evol. Appl, vol.10, pp.5-24, 2017.
DOI : 10.1111/eva.12434

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/eva.12434