S. Bhatt, The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.
DOI : 10.1038/nature12060

URL : http://europepmc.org/articles/pmc3651993?pdf=render

I. Leparc-goffart, A. Nougairede, S. Cassadou, C. Prat, and X. De-lamballerie, Chikungunya in the Americas, Lancet, vol.383, p.514, 2014.
DOI : 10.1016/s0140-6736(14)60185-9

URL : https://hal.archives-ouvertes.fr/hal-01213833

J. Lessler, Assessing the global threat from Zika virus, Science, vol.353, p.8160, 2016.
DOI : 10.1126/science.aaf8160

URL : http://science.sciencemag.org/content/353/6300/aaf8160.full.pdf

C. I. Paules and A. S. Fauci, Yellow fever-once again on the radar screen in the Americas, New. Engl. J. Med, vol.376, pp.1397-1399, 2017.

G. A. Poland, Development of vaccines against Zika virus, Lancet Infect. Dis, vol.18, pp.211-219, 2018.
DOI : 10.1016/s1473-3099(18)30063-x

URL : http://www.thelancet.com/article/S147330991830063X/pdf

A. M. Powers, Vaccine and therapeutic options to control Chikungunya virus, Clin. Microbiol. Rev, vol.31, pp.104-120, 2018.
DOI : 10.1128/cmr.00104-16

URL : https://cmr.asm.org/content/cmr/31/1/e00104-16.full.pdf

J. Flipse and J. M. Smit, The complexity of a dengue vaccine: a review of the human antibody response, PLoS Negl. Trop. D, vol.9, p.3749, 2015.

H. A. Flores and S. L. O'neill, Controlling vector-borne diseases by releasing modified mosquitoes, Nat. Rev. Microbiol, vol.16, pp.508-518, 2018.
DOI : 10.1038/s41579-018-0025-0

F. Baldacchino, Control methods against invasive Aedes mosquitoes in Europe: a review, Pest Manag. Sci, vol.71, pp.1471-1485, 2015.
DOI : 10.1002/ps.4044

URL : https://iris.uniroma1.it/retrieve/handle/11573/515704/285338/Baldacchino_Control_2015.pdf

. World-health-organization and . Unicef, Global Vector Control Response, 2017.

R. Gaugler, D. Suman, and Y. Wang, An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites, Med. Vet. Entomol, vol.26, pp.37-45, 2012.

B. Caputo, The auto-dissemination approach: a novel concept to fight Aedes albopictus in urban areas, PLoS Negl. Trop. D, vol.6, p.1793, 2012.

K. Chandel, Targeting a hidden enemy: pyriproxyfen autodissemination strategy for the control of the container mosquito Aedes albopictus in cryptic habitats, PLoS Negl. Trop. D, vol.10, p.5235, 2016.

I. Unlu, Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations, Parasit. Vectors, vol.10, p.139, 2017.
DOI : 10.1186/s13071-017-2034-7

URL : https://parasitesandvectors.biomedcentral.com/track/pdf/10.1186/s13071-017-2034-7

D. S. Suman, Seasonal field efficacy of pyriproxyfen autodissemination stations against container-inhabiting mosquito Aedes albopictus under different habitat conditions, Pest Manag. Sci, vol.74, pp.885-895, 2017.
DOI : 10.1002/ps.4780

G. J. Devine, Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats, Proc. Natl Acad. Sci. USA, vol.106, pp.11530-11534, 2009.
DOI : 10.1073/pnas.0901369106

URL : http://www.pnas.org/content/106/28/11530.full.pdf

F. Abad-franch, E. Zamora-perea, G. Ferraz, S. D. Padilla-torres, and S. L. Luz, Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale, PLoS Negl. Trop. D, vol.9, p.3702, 2015.
DOI : 10.1371/journal.pntd.0003702

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0003702&type=printable

F. Abad-franch, E. Zamora-perea, and S. L. Luz, Mosquito-disseminated insecticide for citywide vector control and its potential to block arbovirus epidemics: entomological observations and modeling results from Amazonian Brazil, PLoS Med, vol.14, p.1002213, 2017.
DOI : 10.1371/journal.pmed.1002213

URL : https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1002213&type=printable

M. A. Kartzinel, B. W. Alto, M. W. Deblasio, and N. D. Burkett-cadena, Testing of visual and chemical attractants in correlation with the development and field evaluation of an autodissemination station for the suppression of Aedes aegypti and Aedes albopictus in Florida, J. Am. Mosq. Contr, vol.32, pp.194-202, 2016.

E. F. Knipling, Sterile-male method of population control: successful with some insects, the method may also be effective when applied to other noxious animals, Science, vol.130, pp.902-904, 1959.

K. Bourtzis, R. S. Lees, J. Hendrichs, and M. J. Vreysen, More than one rabbit out of the hat: radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations, Acta Trop, vol.157, pp.115-130, 2016.

D. J. Zhang, X. Y. Zheng, Z. Y. Xi, K. Bourtzis, and J. R. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus, PLoS ONE, vol.10, p.121126, 2015.

J. W. Mains, C. L. Brelsfoard, R. I. Rose, and S. L. Dobson, Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes, Sci. Rep, vol.6, p.33846, 2016.
DOI : 10.1038/srep33846

URL : https://www.nature.com/articles/srep33846.pdf

L. Alphey, Genetic control of mosquitoes, Annu. Rev. Entomol, vol.59, pp.205-224, 2014.
DOI : 10.1016/j.nbt.2016.06.828

K. Kyrou, A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat. Biotechnol, vol.36, pp.1062-1066, 2018.
DOI : 10.1038/nbt.4245

URL : https://www.nature.com/articles/nbt.4245.pdf

J. H. Wyss, Screwworm eradication in the Americas, Ann. N. Y. Acad. Sci, vol.916, pp.186-193, 2000.

W. R. Enkerlin, The Moscamed regional programme: review of a success story of area-wide sterile insect technique application, Entomol. Exp. Appl, vol.164, pp.188-203, 2017.

M. J. Vreysen, Sterile insects to enhance agricultural development: the case of sustainable tsetse eradication on Unguja Island, Zanzibar, using an area-wide integrated pest management approach, PLoS Negl. Trop. D, vol.8, p.2857, 2014.

R. Bellini, A. Medici, A. Puggioli, F. Balestrino, and M. Carrieri, Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas, J. Med. Entomol, vol.50, pp.317-325, 2013.
DOI : 10.1603/me12048

URL : https://academic.oup.com/jme/article-pdf/50/2/317/18218899/jmedent50-0317.pdf

J. Bouyer and T. Lefrançois, Boosting the sterile insect technique to control mosquitoes, Trends Parasitol, vol.30, pp.271-273, 2014.
DOI : 10.1016/j.pt.2014.04.002

J. Bouyer, F. Chandre, J. Gilles, and T. Baldet, Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed, Lancet Glob. Health, vol.4, p.364, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594951

M. Fried, Determination of sterile-insect competitiveness, J. Econ. Entomol, vol.64, pp.869-872, 1971.
DOI : 10.1093/jee/64.4.869

D. Chism, B. Apperson, and C. S. , Horizontal transfer of the insect growth regulator pyriproxyfen to larval microcosms by gravid Aedes albopictus and Ochlerotatus triseriatus mosquitoes in the laboratory, Med. Vet. Entomol, vol.17, pp.211-220, 2003.

P. Winskill, Dispersal of engineered male Aedes aegypti mosquitoes, PLoS Negl. Trop. D, vol.9, p.4156, 2015.
DOI : 10.1371/journal.pntd.0004156

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004156&type=printable

R. Weterings, C. Umponstira, and H. L. Buckley, Landscape variation influences trophic cascades in dengue vector food webs, Sci. Adv, vol.4, p.9534, 2018.
DOI : 10.1126/sciadv.aap9534

URL : http://advances.sciencemag.org/content/advances/4/2/eaap9534.full.pdf

D. M. Fonseca, L. R. Kaplan, R. A. Heiry, and D. Strickman, Density-dependent oviposition by female Aedes albopictus (Diptera: Culicidae) spreads eggs among containers during the summer but accumulates them in the fall, J. Med. Entomol, vol.1, 2015.

J. W. Mains, C. L. Brelsfoard, and S. L. Dobson, Male mosquitoes as vehicles for insecticide, PLoS Negl. Trop. D, vol.9, pp.3406-0003406, 2015.

D. S. Suman, Y. Wang, L. Dong, and R. Gaugler, Effects of larval habitat substrate on pyriproxyfen efficacy against Aedes albopictus (Diptera: Culicidae), J. Med. Entomol, vol.50, pp.1261-1266, 2013.
DOI : 10.1603/me13068

T. Clutton-brock and P. Langley, Persistent courtship reduces male and female longevity in captive tsetse flies Glossina morsitans morsitans Westwood (Diptera: Glossinidae), Behav. Ecol, vol.8, pp.392-395, 1997.
DOI : 10.1093/beheco/8.4.392

URL : https://academic.oup.com/beheco/article-pdf/8/4/392/543790/8-4-392.pdf

D. O. Carvalho, Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes, PLoS Negl. Trop. D, vol.9, p.3864, 2015.

S. T. De-pinho, Modelling the dynamics of dengue real epidemics, Philos. T. R. Soc. A, vol.368, pp.5679-5693, 2010.

A. Wesolowski, Impact of human mobility on the emergence of dengue epidemics in Pakistan, Proc. Natl Acad. Sci. USA, vol.112, pp.11887-11892, 2015.

D. Zhu, J. Ren, and H. Zhu, Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model, Math. Methods Appl. Sci, vol.41, pp.5388-5403, 2018.
DOI : 10.1002/mma.5085

L. Lambrechts, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc. Natl Acad. Sci. USA, vol.108, pp.7460-7465, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00587940

V. Duong, Asymptomatic humans transmit dengue virus to mosquitoes, Proc. Natl Acad. Sci. USA, vol.112, pp.14688-14693, 2015.
DOI : 10.1073/pnas.1508114112

URL : https://hal.archives-ouvertes.fr/pasteur-01239113

T. Wang, Evaluation of inapparent dengue infections during an outbreak in Southern China, PLoS Negl. Trop. D, vol.9, p.3677, 2015.

M. J. Wonham, M. A. Lewis, J. Renc?awowicz, and P. Van-den-driessche, Transmission assumptions generate conflicting predictions in host-vector disease models: a case study in West Nile virus, Ecol. Lett, vol.9, pp.706-725, 2006.

N. Chitnis, J. Cushing, and J. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math, vol.67, pp.24-45, 2006.

C. A. Manore, K. S. Hickmann, S. Xu, H. J. Wearing, and J. M. Hyman, Comparing dengue and Chikungunya emergence and endemic transmission in Ae. aegypti and Ae. albopictus, J. Theor. Biol, vol.356, pp.174-191, 2014.
DOI : 10.1016/j.jtbi.2014.04.033

URL : http://europepmc.org/articles/pmc4109365?pdf=render

H. J. Wearing and P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl Acad. Sci. USA, vol.103, pp.11802-11807, 2006.
DOI : 10.1073/pnas.0602960103

URL : http://www.pnas.org/content/103/31/11802.full.pdf

M. Recker, Immunological serotype interactions and their effect on the epidemiological pattern of dengue, Proc. R. Soc. Lond., B, Biol. Sci, vol.276, pp.2541-2548, 2009.

S. Joanne, Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes, Trop. Med. Int. Health, vol.22, pp.1154-1165, 2017.

M. Amaku, Magnitude and frequency variations of vector-borne infection outbreaks using the Ross-Macdonald model: explaining and predicting outbreaks of dengue fever, Epidemiol. Infect, vol.144, pp.3435-3450, 2016.

M. Carrieri, P. Angelini, C. Venturelli, B. Maccagnani, and R. Bellini, Aedes albopictus (Diptera: Culicidae) population size survey in the, 2007.
DOI : 10.1603/me10259

URL : https://academic.oup.com/jme/article-pdf/49/2/388/18218632/jmedent49-0388.pdf

, Chikungunya outbreak area in Italy. II: Estimating epidemic thresholds, J. Med. Entomol, vol.49, pp.388-399, 2012.

Y. Tsuda, Biting density and distribution of Aedes albopictus during the September 2014 outbreak of dengue fever in Yoyogi Park and the vicinity in Tokyo Metropolis, Japan. Jpn. J. Infect. Dis, vol.69, pp.1-5, 2015.

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys, vol.22, pp.403-434, 1976.

M. A. Gibson and J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, vol.104, pp.1876-1889, 2000.
DOI : 10.1021/jp993732q

URL : http://www.soe.ucsc.edu/~msmangel/Gibson and Bruck 2000.pdf

, World Health Organization et al. Public Health Impact of Pesticides Used in Agriculture, 1990.

Y. H. Lu, K. M. Wu, Y. Y. Jiang, Y. Y. Guo, and N. Desneux, Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services, Nature, vol.487, p.362, 2012.
DOI : 10.1038/nature11153

A. F. Harris, Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes, Nat. Biotechnol, vol.30, p.828, 2012.

J. A. Gilbert and L. Melton, Verily project releases millions of factory-reared mosquitoes, Nat. Biotechnol, vol.36, pp.781-782, 2018.
DOI : 10.1038/nbt0918-781a

G. Rezza, Aedes albopictus and the reemergence of Dengue, BMC Public Health, vol.12, p.72, 2012.
DOI : 10.1186/1471-2458-12-72

URL : https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/1471-2458-12-72

H. Peng, A local outbreak of dengue caused by an imported case in Dongguan China, BMC Public Health, vol.12, p.83, 2012.

S. A. Khan, P. Dutta, R. Topno, M. Soni, and J. Mahanta, Dengue outbreak in a hilly state of, Arunachal Pradesh in Northeast India. Sci. World J, vol.2014, pp.1-6, 2014.

A. Régionales-de-santé and O. Indien, Epidémie de dengue à La Réunion: la circulation du virus s'accélère, p.12, 2019.

J. Xiao, Characterizing a large outbreak of dengue fever in Guangdong Province, China. Infect. Dis. Poverty, vol.5, p.44, 2016.

L. B. Carrington, M. V. Armijos, L. Lambrechts, and T. W. Scott, Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti, PLoS Negl. Trop. D, vol.7, p.2190, 2013.
DOI : 10.1371/journal.pntd.0002190

URL : https://hal.archives-ouvertes.fr/pasteur-02011018

L. B. Carrington, S. N. Seifert, M. V. Armijos, L. Lambrechts, and T. W. Scott, Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations, Am. J. Trop. Med, vol.88, pp.689-697, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02011020

K. Sawabe, Host-feeding habits of Culex pipiens and Aedes albopictus (Diptera: Culicidae) collected at the urban and suburban residential areas of Japan, J. Med. Entomol, vol.47, pp.442-450, 2010.

R. Barrera, Vertebrate hosts of Aedes aegypti and Aedes mediovittatus (Diptera: Culicidae) in rural Puerto Rico, J. Med. Entomol, vol.49, pp.917-921, 2012.

W. Tantowijoyo, Spatial and temporal variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta Area of Java, Indonesia, with implications for Wolbachia releases, J. Med. Entomol, vol.53, pp.188-198, 2015.

P. Johnson, V. Spitzauer, and S. Ritchie, Field sampling rate of BG-Sentinel traps for Aedes aegypti (Diptera: Culicidae) in suburban Cairns, Australia. J. Med. Entomol, vol.49, pp.29-34, 2012.

D. A. Villela, Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE, vol.10, p.123794, 2015.

L. Goff and G. , Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy, Parasit. Vectors, vol.12, p.81, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02063510

N. Hartemink, Mapping the basic reproduction number (R0) for vector-borne diseases: a case study on bluetongue virus, Epidemics, vol.1, pp.153-161, 2009.

H. Guis, Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe, J. R. Soc. Interface, vol.9, pp.339-350, 2011.

D. Greenhalgh, Modeling the effect of a novel auto-dissemination trap on the spread of dengue in high-rise condominia, Malaysia. J. Biol. Syst, vol.26, pp.553-578, 2018.

D. S. Suman, Point-source and area-wide field studies of pyriproxyfen autodissemination against urban container-inhabiting mosquitoes, Acta Trop, vol.135, pp.96-103, 2014.
DOI : 10.1016/j.actatropica.2014.03.026

M. Carrieri, M. Bacchi, R. Bellini, and S. Maini, On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy, Environ. Entomol, vol.32, pp.1313-1321, 2003.

S. A. Ritchie, C. Paton, T. Buhagiar, G. A. Webb, and V. Jovic, Residual treatment of Aedes aegypti (Diptera: Culicidae) in containers using pyriproxyfen slow-release granules (Sumilarv 0.5G), J. Med. Entomol, vol.50, pp.1169-1172, 2013.

K. Chan, B. Ho, and Y. Chan, Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City: 2. Larval habitats, Bull. World Health Organ, vol.44, p.629, 1971.

A. Ali, J. K. Nayar, and R. Xue, Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus, J. Am. Mosq. Contr, vol.11, pp.72-76, 1995.

F. Darriet and V. Corbel, Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae, J. Med. Entomol, vol.43, pp.1190-1194, 2006.

M. Sihuincha, Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru, J. Med. Entomol, vol.42, pp.620-630, 2005.

M. T. Andrighetti, F. Cerone, M. Rigueti, K. C. Galvani, and M. L. Da-graça-macoris, Effect of pyriproxyfen in Aedes aegypti populations with different levels of susceptibility to the organophosphate temephos, Dengue, vol.32, p.186, 2008.

L. Primault, Comment booster la technique de l'insecte stérile? Transfert de pyriproxyfène par les mâles aux femelles et impact sur leur reproduction (Master's thesis, 2015.

D. R. Pleydell, Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape, PLOS Comput. Biol, vol.14, p.1006085, 2018.

J. Peccoud, D. R. Pleydell, and N. Sauvion, A framework for estimating the effects of sequential reproductive barriers: implementation using Bayesian models with field data from cryptic species, Evolution, vol.72, pp.2503-2512, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976412

K. Soetaert, T. Petzoldt, and R. W. Setzer, Solving differential equations in R: Package deSolve, J. Stat. Softw, vol.33, pp.1-25, 2010.
DOI : 10.1063/1.3498463

URL : https://pure.knaw.nl/portal/files/478930/Soetaert_ea_4924.pdf

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2018.

J. M. Heffernan, R. J. Smith, and L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, vol.2, pp.281-293, 2005.

O. Diekmann, J. Heesterbeek, and M. G. Roberts, The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, vol.7, pp.873-885, 2009.

D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys, vol.115, pp.1716-1733, 2001.
DOI : 10.1063/1.1378322