N. J. Kassebaum, Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.388, pp.1603-1658, 2015.

E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol, vol.48, pp.459-462, 1955.

P. Rendón, Medfly (Diptera:Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala, J. Econ. Entomol, vol.97, pp.1547-1553, 2004.

P. A. Papathanos, Sex separation strategies: past experience and new approaches, Malar. J, vol.8, p.5, 2009.

L. Alphey, Genetic control of mosquitoes, Annu. Rev. Entomol, vol.59, pp.205-224, 2014.

J. R. Gilles, Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes, Acta Trop, vol.132, pp.178-187, 2014.

F. Bernardini, Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes, Parasit. Vectors, vol.11, p.660, 2018.

I. Häcker and M. F. Schetelig, Molecular tools to create new strains for mosquito sexing and vector control, Parasit. Vectors, vol.11, p.645, 2018.

A. S. Robinson, Mutations and their use in insect control, Mutat. Res. Mutat. Res, vol.511, pp.113-132, 2002.

B. G. Fanson, A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni, Entomol. Exp. Appl, vol.151, pp.152-159, 2014.

W. Orankanok, Area-wide integrated control of oriental fruit fly Bactrocera dorsalis and guava fruit fly Bactrocera correcta in Thailand, Area-Wide Control of Insect Pests, pp.517-526, 2007.

M. J. Scott, Review of research advances in the screwworm eradication program over the past 25 years, Entomol. Exp. Appl, vol.164, pp.226-236, 2017.

C. Concha, A transgenic male-only strain of the New World screwworm for an improved control program using the sterile insect technique, BMC Biol, vol.14, p.72, 2016.

A. A. Augustinos, Ceratitis capitata genetic sexing strains: laboratory evaluation of strains from mass-rearing facilities worldwide, Entomol. Exp. Appl, vol.164, pp.305-317, 2017.

P. A. Papathanos, A perspective on the need and current status of efficient sex separation methods for mosquito genetic control, Parasit. Vectors, vol.11, p.654, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02003901

R. Bellini, Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas, J. Med. Entomol, vol.50, pp.317-325, 2013.

X. Zheng, Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 2019.

F. Bouyer, Ex-ante benefit-cost analysis of the elimination of a Glossina palpalis gambiensis population in the Niayes of Senegal, PLoS Negl. Trop. Dis, vol.8, p.3112, 2014.

M. T. Seck, Quality of sterile male tsetse after long distance transport as chilled, irradiated pupae, PLoS Negl. Trop. Dis, vol.9, p.4229, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594146

P. Agnew, A minimalist approach to the effects of density-dependent competition on insect life-history traits, Ecol. Entomol, vol.27, pp.396-402, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01960690

H. K. Phuc, Late-acting dominant lethal genetic systems and mosquito control, BMC Biol, vol.5, p.11, 2007.

G. Saccone, New sexing strains for Mediterranean fruit fly Ceratitis capitata: transforming females into males, Area-Wide Control of Insect Pests, pp.95-102, 2007.

N. Windbichler, Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae, PLoS Genet, vol.4, p.1000291, 2008.

R. Galizi, A synthetic sex ratio distortion system for the control of the human malaria mosquito, Nat. Commun, vol.5, p.3977, 2014.

R. Galizi, A CRISPR-Cas9 sex-ratio distortion system for genetic control, Sci. Rep, vol.6, p.31139, 2016.

F. Catteruccia, An Anopheles transgenic sexing strain for vector control, Nat. Biotechnol, vol.23, pp.1414-1417, 2005.

K. Magnusson, Transcription regulation of sexbiased genes during ontogeny in the malaria vector Anopheles gambiae, PLoS One, vol.6, p.21572, 2011.

E. Marois, High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions, Malar. J, vol.11, p.302, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00741472

F. Bernardini, Site-specific genetic engineering of the Anopheles gambiae Y chromosome, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.7600-7605, 2014.

F. Bernardini, Cross-species Y chromosome function between malaria vectors of the Anopheles gambiae species complex, Genetics, vol.207, pp.729-740, 2017.

F. Li, Transgenic sexing system for genetic control of the Australian sheep blow fly Lucilia cuprina, Insect Biochem. Mol. Biol, vol.51, pp.80-88, 2014.

C. E. Ogaugwu, Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on femalespecific embryonic lethality, Insect Biochem. Mol. Biol, vol.43, pp.1-8, 2013.

M. F. Schetelig and A. M. Handler, A transgenic embryonic sexing system for Anastrepha suspensa (Diptera: Tephritidae), Insect Biochem. Mol. Biol, vol.42, pp.790-795, 2012.

Y. Yan, Building early-larval sexing systems for genetic control of the Australian sheep blow fly Lucilia cuprina using two constitutive promoters, Sci. Rep, vol.7, p.2538, 2017.

G. Franz, Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique, Sterile Insect Technique, pp.427-451, 2005.

J. S. Meza, Comparison of classical and transgenic genetic sexing strains of Mediterranean fruit fly (Diptera: Tephritidae) for application of the sterile insect technique, PLoS One, vol.13, p.208880, 2018.

G. Liu, RNAi-mediated knock-down of transformer and transformer 2 to generate male-only progeny in the oriental fruit fly, Bactrocera dorsalis (Hendel), PLoS One, vol.10, p.128892, 2015.

K. P. Hoang, Mechanisms of sex determination and transmission ratio distortion in Aedes aegypti, Parasit. Vectors, vol.9, p.49, 2016.

S. Whyard, Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs, Parasit. Vectors, vol.8, p.96, 2015.

E. Krzywinska, A maleness gene in the malaria mosquito Anopheles gambiae, Science, vol.353, pp.67-69, 2016.

E. Krzywinska and J. Krzywinski, Effects of stable ectopic expression of the primary sex determination gene Yob in the mosquito Anopheles gambiae, Parasit. Vectors, vol.11, p.648, 2018.

J. Li and A. M. Handler, CRISPR/Cas9-mediated gene editing in an exogenous transgene and an endogenous sex determination gene in the Caribbean fruit fly, Anastrepha suspensa, Gene, vol.691, pp.160-166, 2019.

A. Aryan, Nix confers heritable sex-conversion in Aedes aegypti and myo-sex is needed for male flight, 2019.

D. O. Mcinnis, Development of a pupal color-based genetic sexing strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), Ann. Entomol. Soc. Am, vol.97, pp.1026-1033, 2004.

S. Isasawin, Characterization and evaluation of microsatellite markers in a strain of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), with a genetic sexing character used in sterile insect population control, Eur. J. Entomol, vol.109, pp.331-338, 2012.

S. Isasawin, Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain, BMC Genet, vol.15, p.2, 2014.

C. S. Zepeda-cisneros, Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae), BMC Genet, vol.15, p.1, 2014.

D. Mcinnis, Melon fly (Diptera: Tephritidae) genetic sexing: all-male sterile fly releases in Hawaii, Proc. Hawaii. Entomol. Soc, vol.39, pp.105-110, 2007.

D. Orozco-dávila, Sterility and sexual competitiveness of Tapachula-7 Anastrepha ludens males irradiated at different doses, PLoS One, vol.10, p.135759, 2015.

R. C. Smith, Testis-specific expression of the ?2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker, Insect Mol. Biol, vol.16, pp.61-71, 2007.

T. Nolan, Developing transgenic Anopheles mosquitoes for the sterile insect technique, Genetica, vol.139, pp.33-39, 2011.

K. C. Condon, Genetic sexing through the use of Ylinked transgenes, Insect Biochem. Mol. Biol, vol.37, pp.1168-1176, 2007.

F. E. Dowell, Sex separation of tsetse fly pupae using near-infrared spectroscopy, Bull. Entomol. Res, vol.95, pp.249-257, 2005.

Z. R. Moran and A. G. Parker, Near infrared imaging as a method of studying tsetse fly (Diptera: Glossinidae) pupal development, J. Insect Sci, vol.16, p.72, 2016.

M. Zacarés, Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species, Parasit. Vectors, vol.11, p.656, 2018.

R. Bellini, Exploring protandry and pupal size selection for Aedes albopictus sex separation, Parasit. Vectors, vol.11, p.650, 2018.

G. Fu, Female-specific insect lethality engineered using alternative splicing, Nat. Biotechnol, vol.25, pp.353-357, 2007.

T. Ant, Control of the olive fruit fly using geneticsenhanced sterile insect technique, BMC Biol, vol.10, p.51, 2012.

Y. Yan and M. J. Scott, A transgenic embryonic sexing system for the Australian sheep blow fly Lucilia cuprina, Sci. Rep, vol.5, p.16090, 2015.

G. Fu, Female-specific flightless phenotype for mosquito control, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.4550-4554, 2010.

G. M. Labbé, Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus, PLoS Negl. Trop. Dis, vol.6, p.1724, 2012.

O. Marinotti, Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi, Malar. J, vol.12, p.142, 2013.

A. Sharma, Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi, Acta Trop, vol.128, pp.41-47, 2013.

H. Yamada, Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin, Malar. J, vol.11, p.208, 2012.

H. Yamada, The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages, Malar. J, vol.13, p.318, 2014.

C. Ndo, X-ray sterilization of the An. arabiensis genetic sexing strain 'ANO IPCL1' at pupal and adult stages, Acta Trop, vol.131, pp.124-128, 2014.

H. Yamada, The Anopheles arabiensis genetic sexing strain ANO IPCL1 and its application potential for the sterile insect technique in integrated vector management programmes, Acta Trop, vol.142, pp.138-144, 2015.

H. Yamada, Anopheles arabiensis egg treatment with dieldrin for sex separation leaves residues in male adult mosquitoes that can bioaccumulate in goldfish (Carassius auratus auratus), Environ. Toxicol. Chem, vol.32, pp.2786-2791, 2013.

G. Munhenga, Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: steps towards the use of the sterile insect technique to control the major malaria vector Anopheles arabiensis in South Africa, Parasit. Vectors, vol.9, p.122, 2016.

L. C. Dandalo, Development of a genetic sexing strain of Anopheles arabiensis for KwaZulu-Natal, South Africa. Med. Vet. Entomol, vol.32, pp.61-69, 2018.

C. Lebon, Construction of a genetic sexing strain for Aedes albopictus: a promising tool for the development of sterilizing insect control strategies targeting the tiger mosquito, Parasit. Vectors, vol.11, p.658, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02141683

H. Yamada, Eliminating female Anopheles arabiensis by spiking blood meals with toxicants as a sex separation method in the context of the sterile insect technique, Parasit. Vectors, vol.6, p.197, 2013.

N. P. Kandul, Transforming insect population control with precision guided sterile males with demonstration in flies, Nat. Commun, vol.10, p.84, 2019.

J. Bouyer and M. J. Vreysen, Concerns about the feasibility of using 'precision guided sterile males' to control insects, Nat. Commun

A. Panjwani and A. Wilson, What is stopping the use of genetically modified insects for disease control?, PLoS Pathog, vol.12, p.1005830, 2016.

T. Antonelli, Transgenic pests and human health: a short overview of social, cultural, and scientific considerations, Genetic Control of Malaria and Dengue, pp.1-30, 2015.

T. K. Mukiama, Y-autosome genetic sexing strain of Anopheles albimanus (Diptera: Culicidae), Int. J. Trop. Insect Sci, vol.6, pp.649-652, 1985.

J. A. Seawright, Redeye and vermillion eye, recessive mutants on the right arm of chromosome 2 in Anopheles albimanus, Mosq. News, vol.42, pp.590-593, 1982.

C. Ndo, Isolation and characterization of a temperature-sensitive lethal strain of Anopheles arabiensis for SIT-based application, Parasit. Vectors, vol.11, p.659, 2018.

W. C. Black, Why RIDL is not SIT, Trends Parasitol, vol.27, pp.362-370, 2011.

L. Facchinelli, Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector, Parasit. Vectors, vol.12, p.70, 2019.

P. Schliekelman, Pest control by genetic manipulation of sex ratio, J. Econ. Entomol, vol.98, pp.18-34, 2005.

J. C. Lucchesi and M. I. Kuroda, Dosage compensation in Drosophila, Cold Spring Harb. Perspect. Biol, vol.7, p.19398, 2015.

A. B. Hall, A male-determining factor in the mosquito Aedes aegypti, Science, vol.348, pp.1268-1270, 2015.

A. Sharma, Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22, Science, vol.356, pp.642-645, 2017.

K. Kyrou, A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat. Biotechnol, vol.36, pp.1062-1066, 2018.

E. Clough, Sex-and tissue-specific functions of Drosophila doublesex transcription factor target genes, Dev. Cell, vol.31, pp.761-773, 2014.

A. Kopp, Dmrt genes in the development and evolution of sexual dimorphism, Trends Genet, vol.28, pp.175-184, 2012.

E. C. Verhulst and L. Van-de-zande, Double nexusdoublesex is the connecting element in sex determination, Brief. Funct. Genomics, vol.14, pp.396-406, 2015.

L. M. Gomulski, The Nix locus on the male-specific homologue of chromosome 1 in Aedes albopictus is a strong candidate for a male-determining factor, Parasit. Vectors, vol.11, p.647, 2018.

F. Criscione, GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi, vol.5, p.19281, 2016.

X. Li, Two of the three Transformer-2 genes are required for ovarian development in Aedes albopictus, Insect Biochem. Mol. Biol, vol.109, pp.92-105, 2019.

A. Meccariello, Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests, 2019.

V. Petrella, Genomics and transcriptomics to unravel sex determination pathway and its evolution in sand flies, 2019.