C. H. De-moor, H. Meijer, and S. Lissenden, Mechanisms of translational control by the 3 0 UTR in development and differentiation, Semin. Cell Dev. Biol, vol.16, pp.49-58, 2005.

J. Newport and M. Kirschner, A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the Midblastula stage, Cell, vol.30, pp.673-686, 1982.

J. Newport and M. Kirschner, A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription, Cell, vol.30, pp.689-696, 1982.

Y. Audic, F. Omilli, and H. B. Osborne, Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage, Mol. Cell. Biol, vol.17, pp.209-218, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00315978

G. K. Voeltz and J. A. Steitz, AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development, Mol. Cell. Biol, vol.18, pp.7537-7545, 1998.

F. H. Wilt, The dynamics of maternal poly(A)-containing mRNA in fertilized sea urchin eggs, Cell, vol.11, pp.673-681, 1977.

R. Duncan and T. Humphreys, The poly(A)(+)RNA sequence complexity is also represented in poly(A)(-)RNA in sea-urchin embryos, Differentiation, vol.28, pp.24-29, 1984.

M. B. Dworkin and E. Dworkin-rastl, Changes in RNA Titers and polyadenylation during oogenesis and oocyte maturation in Xenopus laevis, Dev. Biol, vol.112, pp.451-457, 1985.

M. B. Dworkin, A. Shrutkowski, and E. Dworkin-rastl, Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis, Proc. Natl Acad. Sci. USA, vol.82, pp.7636-7640, 1985.

M. B. Dworkin and E. Dworkin-rastl, Metabolic regulation during early frog development, J. Biol. Chem, vol.262, pp.17038-17045, 1987.

I. Slater and D. W. Slater, Cell-free cytoplasmic polyadenylation of oogenic RNA, Differentiation, vol.13, pp.109-115, 1979.

M. B. Dworkin and J. W. Hershey, Cellular titers and subcellular distributions of abundant polyadenylate-containing ribonucleic acid species during early development in the frog Xenopus laevis, Mol. Cell. Biol, vol.1, pp.983-993, 1981.

J. Paris, H. B. Osborne, A. Couturier, R. Leguellec, and M. Philippe, Changes in the polyadenylation of specific stable RNAs during the early development of Xenopus laevis, Gene, vol.72, pp.169-176, 1988.

L. Guellec, R. Paris, J. Couturier, A. Roghi, C. Philippe et al., Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein, Mol. Cell. Biol, vol.11, pp.3395-3398, 1991.

C. Roghi, R. Giet, R. Uzbekov, N. Morin, I. Chartrain et al., The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycledependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly, J. Cell Sci, vol.111, pp.557-572, 1998.
URL : https://hal.archives-ouvertes.fr/inserm-00966036

J. Blot, I. Chartrain, C. Roghi, M. Philippe, and J. P. Tassan, Cell cycle regulation of pEg3, a new Xenopus protein kinase of the KIN1/PAR-1/MARK family, Dev. Biol, vol.241, pp.327-338, 2002.

F. Cubizolles, V. Legagneux, R. Le-guellec, I. Chartrain, R. Uzbekov et al., ) pEg7, a new Xenopus protein required for mitotic chromosome condensation in egg extracts, J. Cell Biol, vol.143, pp.1437-1446, 1998.

L. Paillard and H. B. Osborne, East of EDEN was a poly(A) tail, Biol. Cell, vol.95, pp.211-219, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00982686

L. L. Mcgrew, E. Dworkin-rastl, M. B. Dworkin, and J. D. Richter, Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element, Genes Dev, vol.3, pp.803-815, 1989.

C. A. Fox, M. D. Sheets, and M. Wickens, Poly(A) addition during maturation of frog oocytes: Distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU, Genes Dev, vol.3, pp.2151-2162, 1989.

A. Charlesworth, J. A. Ridge, L. A. King, M. C. Macnicol, and A. M. Macnicol, A novel regulatory element determines the timing of Mos mRNA translation during Xenopus oocyte maturation, EMBO J, vol.21, pp.2798-2806, 2002.

A. Charlesworth, L. L. Cox, and A. M. Macnicol, Cytoplasmic polyadenylation element (CPE)-and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes, J. Biol. Chem, vol.279, pp.17650-17659, 2004.

L. Paillard, D. Maniey, P. Lachaume, V. Legagneux, and H. B. Osborne, Identification of a C-rich element as a novel cytoplasmic polyadenylation element in Xenopus embryos, Mech. Dev, vol.93, pp.117-125, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00467031

R. Simon, J. Tassan, and J. D. Richter, Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element, Genes Dev, vol.6, pp.2580-2591, 1993.

R. Simon and J. D. Richter, Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins, Mol. Cell. Biol, vol.14, pp.7867-7875, 1994.

S. M. Varnum and W. M. Wormington, Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences : a default mechanism for translational control, Genes Dev, vol.4, pp.2278-2286, 1990.

C. A. Fox and M. Wickens, Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3 0 UTR of certain maternal mRNAs, Genes Dev, vol.4, pp.2287-2298, 1990.

Y. Audic, C. Anderson, R. Bhatty, and R. S. Hartley, Zygotic regulation of maternal cyclin A1 and B2 mRNAs, Mol. Cell. Biol, vol.21, pp.1662-1671, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02325473

Y. Audic, M. Garbrecht, B. Fritz, M. Sheets, and R. Hartley, Zygotic control of maternal cyclin A1 translation and mRNA stability, Dev. Dyn, vol.225, pp.511-521, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02325355

J. Richter, , pp.481-503, 1995.

E. Watrin, F. Cubizolles, H. B. Osborne, K. Le-guellec, and V. Legagneux, Expression and functional dynamics of the XCAP-D2 condensin subunit in Xenopus laevis oocytes, J. Biol. Chem, vol.278, pp.25708-25715, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00292943

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl Acad. Sci. USA, vol.98, pp.5116-5121, 2001.

A. I. Saeed, V. Sharov, J. White, J. Li, W. Liang et al., TM4: a free, open-source system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

T. Bassez, J. Paris, F. Omilli, C. Dorel, and H. B. Osborne, Post-Transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes, Development, vol.110, pp.955-962, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00293396

J. C. Rassa, G. M. Wilson, G. A. Brewer, and G. D. Parks, Spacing constraints on reinitiation of paramyxovirus transcription: the gene end U tract acts as a spacer to separate gene end from gene start sites, Virology, vol.274, pp.438-449, 2000.

J. Paris and M. Philippe, Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development, Dev. Biol, vol.140, pp.221-224, 1990.

C. R. Murphy, J. L. Sabel, A. D. Sandler, and J. M. Dagle, Survivin mRNA is down-regulated during early Xenopus laevis embryogenesis, Dev. Dyn, vol.225, pp.597-601, 2002.

E. Beaudoing, S. Freier, J. R. Wyatt, J. M. Claverie, and D. Gautheret, Patterns of variant polyadenylation signal usage in human genes, Genome Res, vol.10, pp.1001-1010, 2000.

B. Tian, J. Hu, H. Zhang, and C. S. Lutz, A large-scale analysis of mRNA polyadenylation of human and mouse genes, Nucleic Acids Res, vol.33, pp.201-212, 2005.

P. Bouvet, F. Omilli, Y. Arlot-bonnemains, V. Legagneux, C. Roghi et al., The deadenylation conferred by the 3 0 untranslated region of a developmentally controlled mRNA in Xenopus embryos is switched to polyadenylation by deletion of a short sequence element, Mol. Cell. Biol, vol.14, pp.1893-1900, 1994.

H. B. Osborne, C. Duval, L. Ghoda, F. Omilli, T. Bassez et al., Expression and post-transcriptional regulation of ornithine decarboxylase during early Xenopus development, Eur. J. Biochem, vol.202, pp.575-581, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00293081

E. Houliston, R. Le-guellec, M. Kress, M. Philippe, and K. Le-guellec, The kinesin-related protein Eg5 associates with both interphase and spindle microtubules during Xenopus early development, Dev. Biol, vol.164, pp.147-159, 1994.

K. Iwabuchi, P. L. Bartel, B. Li, R. Marraccino, and S. Fields, Two cellular proteins that bind to wild-type but not mutant p53, Proc. Natl Acad. Sci. USA, vol.91, pp.6098-6102, 1994.

L. Naumovski and M. L. Cleary, The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M, Mol. Cell. Biol, vol.16, pp.3884-3892, 1996.

K. Iwabuchi, B. Li, H. F. Massa, B. J. Trask, T. Date et al., Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2, J. Biol. Chem, vol.273, pp.26061-26068, 1998.

A. C. Verrotti, S. R. Thompson, C. Wreden, S. Strickland, and M. Wickens, Evolutionary conservation of sequence elements controlling cytoplasmic polyadenylylation, Proc. Natl Acad. Sci. USA, vol.93, pp.9027-9032, 1996.

P. B. Dallas, N. G. Gottardo, M. J. Firth, A. H. Beesley, K. Hoffmann et al., Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR-how well do they correlate?, BMC Genomics, vol.6, p.59, 2005.

B. D. Brown and R. M. Harland, Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus ooctyes, Genes Dev, vol.4, pp.1925-1935, 1990.

B. D. Brown, I. D. Zipkin, and R. M. Harland, Sequence-specific endonucleolytic cleavage and protection of mRNA in Xenopus and Drosophila, Genes Dev, vol.7, pp.1620-1631, 1993.

J. S. Stanford, S. L. Lieberman, V. L. Wong, and J. V. Ruderman, Regulation of the G2/M transition in oocytes of Xenopus tropicalis, Dev. Biol, vol.260, pp.438-448, 2003.

J. F. Bodart, D. V. Gutierrez, A. R. Nebreda, B. D. Buckner, J. R. Resau et al., Characterization of MPF and MAPK activities during meiotic maturation of Xenopus tropicalis oocytes, Dev. Biol, vol.245, pp.348-361, 2002.

J. D. Reimann, B. E. Gardner, F. Margottin-goguet, and P. K. Jackson, Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins, Genes Dev, vol.15, pp.3278-3285, 2001.

J. D. Reimann and P. K. Jackson, Emi1 is required for cytostatic factor arrest in vertebrate eggs, Nature, vol.416, pp.850-854, 2002.

J. D. Vassalli and A. Stutz, Translational control. Awakening dormant mRNAs, Curr. Biol, vol.5, pp.476-479, 1995.

L. Du and J. Richter, Activity-dependent polyadenylation in neurons, RNA, vol.11, pp.1340-1347, 2005.

B. R. Fritz and M. D. Sheets, Regulation of the mRNAs encoding proteins of the BMP signaling pathway during the maternal stages of Xenopus development, Dev. Biol, vol.236, pp.230-243, 2001.

C. Gautier-courteille, C. Le-clainche, C. Barreau, Y. Audic, A. Graindorge et al., EDEN-BP-dependent post-transcriptional regulation of gene expression in Xenopus somitic segmentation, Development, vol.131, pp.6107-6117, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00292940

V. Hilgers, O. Pourquie, and J. Dubrulle, In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo, Dev. Biol, vol.284, pp.292-300, 2005.

Y. Audic and R. Hartley, Post-transcriptional regulations in cancer, Biol. Cell, vol.96, pp.479-498, 2004.

D. G. Wells, X. Dong, E. M. Quinlan, Y. S. Huang, M. F. Bear et al., A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons, J. Neurosci, vol.21, pp.9541-9548, 2001.

R. Mendez and J. D. Richter, Translational control by CPEB: a means to the end, Nature Rev. Mol. Cell. Biol, vol.2, pp.521-529, 2001.

A. M. Zubiaga, J. G. Belasco, and M. E. Greenberg, The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation, Mol. Cell. Biol, vol.15, pp.2219-2230, 1995.

Y. Audic, F. Omilli, and H. B. Osborne, Embryo deadenylation element-dependent deadenylation is enhanced by a cis element containing AUU repeats, Mol. Cell. Biol, vol.18, pp.6879-6884, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02325486