J. Boucher, B. Masri, and D. Daviaud, Apelin, a newly identified adipokine up-regulated by insulin and obesity, Endocrinology, vol.146, pp.1764-1771, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00480981

K. Tatemoto, M. Hosoya, and Y. Habata, Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor, Biochem Biophys Res Commun, vol.251, pp.471-476, 1998.

C. Carpéné, C. Dray, and C. Attané, Expanding role for the apelin/APJ system in physiopathology, J Physiol Biochem, vol.63, pp.359-373, 2007.

C. Dray, C. Knauf, and D. Daviaud, Apelin stimulates glucose utilization in normal and obese insulin-resistant mice, Cell Metab, vol.8, pp.437-445, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00408948

P. Yue, H. Jin, and M. Aillaud, Apelin is necessary for the maintenance of insulin sensitivity, Am J Physiol Endocrinol Metab, vol.298, pp.59-67, 2010.

C. Dray, C. Debard, and J. Jager, Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans, Am J Physiol Endocrinol Metab, vol.298, pp.1161-1169, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00506117

K. Higuchi, T. Masaki, and K. Gotoh, Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice, Endocrinology, vol.148, pp.2690-2697, 2007.

P. Yue, H. Jin, and S. Xu, Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms, Endocrinology, vol.152, pp.59-68, 2011.

C. Attané, D. Daviaud, and C. Dray, Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo, J Mol Endocrinol, vol.46, pp.21-28, 2011.

K. Kuba, L. Zhang, and Y. Imai, Impaired heart contractility in Apelin genedeficient mice associated with aging and pressure overload, Circ Res, vol.102, issue.e36, 2008.

, Circ Res, vol.101, pp.32-42, 2007.

D. K. Lee, V. R. Saldivia, T. Nguyen, R. Cheng, S. R. George et al., Modification of the terminal residue of apelin-13 antagonizes its hypotensive action, Endocrinology, vol.146, pp.231-236, 2005.

D. J. Dyck, D. Miskovic, L. Code, J. J. Luiken, and A. Bonen, Endurance training increases FFA oxidation and reduces triacylglycerol utilization in contracting rat soleus, Am J Physiol Endocrinol Metab, vol.278, pp.778-785, 2000.

A. Benani, V. Barquissau, and L. Carneiro, Method for functional study of mitochondria in rat hypothalamus, J Neurosci Methods, vol.178, pp.301-307, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00455122

C. Knauf, P. D. Cani, and A. Ait-belgnaoui, Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure, Endocrinology, vol.149, pp.4768-4777, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00409099

C. Bonnard, A. Durand, and S. Peyrol, Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice, J Clin Invest, vol.118, pp.789-800, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00808486

V. Bezaire, C. R. Bruce, and G. J. Heigenhauser, Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation, Am J Physiol Endocrinol Metab, vol.290, pp.509-515, 2006.

D. H. Chace, S. L. Hillman, J. L. Van-hove, and E. W. Naylor, Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry, Clin Chem, vol.43, pp.2106-2113, 1997.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, vol.37, pp.911-917, 1959.

A. Barrans, X. Collet, and R. Barbaras, Hepatic lipase induces the formation of pre-beta 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases, J Biol Chem, vol.269, pp.11572-11577, 1994.

J. D. Mcgarry, M. J. Stark, and D. W. Foster, Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay, J Biol Chem, vol.253, pp.8291-8293, 1978.

M. C. Iglesias-osma, S. Bour, and M. J. Garcia-barrado, Methylamine but not mafenide mimics insulin-like activity of the semicarbazide-sensitive amine oxidase-substrate benzylamine on glucose tolerance and on human adipocyte metabolism, Pharmacol Res, vol.52, pp.475-484, 2005.

J. Lin, C. Handschin, and B. M. Spiegelman, Metabolic control through the PGC-1 family of transcription coactivators, Cell Metab, vol.1, pp.361-370, 2005.

M. E. Patti and S. Corvera, The role of mitochondria in the pathogenesis of type 2 diabetes, Endocr Rev, vol.31, pp.364-395, 2010.

C. A. Witczak, C. G. Sharoff, and L. J. Goodyear, AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism, Cell Mol Life Sci, vol.65, pp.3737-3755, 2008.

R. M. Reznick and G. I. Shulman, The role of AMP-activated protein kinase in mitochondrial biogenesis, J Physiol, vol.574, pp.33-39, 2006.

T. R. Koves, J. R. Ussher, and R. C. Noland, Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance, Cell Metab, vol.7, pp.45-56, 2008.

S. J. Mihalik, B. H. Goodpaster, and D. E. Kelley, Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity, Obesity (Silver Spring), vol.18, pp.1695-1700, 2010.

K. Morino, K. F. Petersen, and G. I. Shulman, Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction, Diabetes, vol.55, pp.9-15, 2006.

N. Turner and L. K. Heilbronn, Is mitochondrial dysfunction a cause of insulin resistance?, Trends Endocrinol Metab, vol.19, pp.324-330, 2008.

S. Summermatter, H. Troxler, G. Santos, and C. Handschin, Coordinated balancing of muscle oxidative metabolism through PGC-1a increases metabolic flexibility and preserves insulin sensitivity, Biochem Biophys Res Commun, vol.408, pp.180-185, 2011.

T. R. Koves, P. Li, and J. An, Peroxisome proliferator-activated receptorgamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency, J Biol Chem, vol.280, pp.33588-33598, 2005.

C. R. Bruce, A. D. Kriketos, G. J. Cooney, and J. A. Hawley, Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with Type 2 diabetes, Diabetologia, vol.47, pp.23-30, 2004.

J. A. Kim, Y. Wei, and J. R. Sowers, Role of mitochondrial dysfunction in insulin resistance, Circ Res, vol.102, pp.401-414, 2008.

D. M. Muoio and T. R. Koves, Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease, Appl Physiol Nutr Metab, vol.32, pp.874-883, 2007.

V. K. Mootha, C. M. Lindgren, and K. F. Eriksson, PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat Genet, vol.34, pp.267-273, 2003.

M. E. Patti, A. J. Butte, and S. Crunkhorn, Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1, Proc Natl Acad Sci U S A, vol.100, pp.8466-8471, 2003.

B. C. Frier, D. B. Williams, and D. C. Wright, The effects of apelin treatment on skeletal muscle mitochondrial content, Am J Physiol Regul Integr Comp Physiol, vol.297, pp.1761-1768, 2009.

T. Yamamoto, Y. Habata, and Y. Matsumoto, Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle, Biochim Biophys Acta, vol.1810, pp.853-862, 2011.

M. P. Gaidhu, S. Fediuc, and R. B. Ceddia, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes, J Biol Chem, vol.281, pp.25956-25964, 2006.