P. Amarasekare and R. Nisbet, Spatial heterogeneity, sourcesink dynamics, and the local coexistence of competing species, The American Naturalist, vol.158, issue.6, pp.572-584, 2001.

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, vol.9, issue.6, pp.707-723, 1968.
DOI : 10.1002/bit.260100602

G. J. Butler and G. S. Wolkowicz, A Mathematical Model of the Chemostat with a General Class of Functions Describing Nutrient Uptake, SIAM Journal on Applied Mathematics, vol.45, issue.1, pp.138-151, 1985.
DOI : 10.1137/0145006

A. Bush and A. , The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, Journal of Theoretical Biology, vol.63, issue.2, pp.385-395, 1976.
DOI : 10.1016/0022-5193(76)90041-2

C. De-gooijer, W. Bakker, H. Beeftink, and J. Tramper, Bioreactors in series: An overview of design procedures and practical applications, Enzyme and Microbial Technology, vol.18, issue.3, pp.202-219, 1996.
DOI : 10.1016/0141-0229(95)00090-9

E. , D. Mattia, S. Grego, and I. Cacciari, Eco-physiological characterization of soil bacterial populations in different states of growth Microb, Ecol, vol.43, issue.1, pp.34-43, 2002.

D. Dochain and G. , Adaptive identification and control algorithms for nonlinear bacterial growth systems, Automatica, vol.20, issue.5, pp.621-634, 1984.
DOI : 10.1016/0005-1098(84)90012-8

D. Dochain and P. Vanrolleghem, Dynamical Modelling & Estimation in Wastewater Treatment Processes, Water Intelligence Online, vol.4, issue.0, 2001.
DOI : 10.2166/9781780403045

A. Dramé, J. Harmand, A. Rapaport, and C. Lobry, Multiple steady state profiles in interconnected biological systems, Mathematical and Computer Modelling of Dynamical Systems, vol.75, issue.5, pp.379-393, 2006.
DOI : 10.1080/13873950600723277

H. El-owaidy and O. El-leithy, Theoretical studies on extinction in the gradostat, Mathematical Biosciences, vol.101, issue.1, pp.1-26, 1990.
DOI : 10.1016/0025-5564(90)90099-K

H. Freedman and G. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisited, Bulletin of Mathematical Biology, vol.17, issue.Suppl. 1, pp.493-508, 1986.
DOI : 10.1007/BF02462320

C. Fritzsche, K. Huckfeldt, and E. Niemann, Ecophysiology of associative nitrogen fixation in a rhizosphere model in pure and mixed culture, FEMS Microbiology Ecology, vol.8, issue.4, pp.279-290, 2011.
DOI : 10.1111/j.1574-6941.1991.tb01773.x

A. Gaki, A. Theodorou, D. Vayenas, and S. Pavlou, Complex dynamics of microbial competition in the gradostat, Journal of Biotechnology, vol.139, issue.1, pp.38-46, 2009.
DOI : 10.1016/j.jbiotec.2008.08.006

D. Gravel, F. Guichard, M. Loreau, and N. Mouquet, Source and sink dynamics in metaecosystems, Ecology, pp.91-2172, 2010.

I. Haidar, A. Rapaport, and F. Gérard, Effects of spatial structure and diffusion on the performances of the chemostat, Mathematical Biosciences and Engineering, vol.8, issue.4, pp.953-971, 2011.
DOI : 10.3934/mbe.2011.8.953

URL : https://hal.archives-ouvertes.fr/hal-01001373

J. Harmand, A. Rapaport, and F. Mazenc, Output tracking of continuous bioreactors through recirculation and by-pass, Automatica, vol.42, issue.6, pp.42-1025, 2006.
DOI : 10.1016/j.automatica.2006.02.012

URL : https://hal.archives-ouvertes.fr/hal-01003231

J. Harmand, A. Rapaport, and A. Trofino, Optimal design of two interconnected bioreactors?some new results, American Institute of Chemical Engineering Journal, pp.49-1433, 1999.

A. Hasler and W. Johnson, The in situ chemostat ? a self-contained continuous culturing and water sampling system, Limnol. Oceanogr, pp.79-326, 1954.

J. Hofbauer and W. So, Competition in the gradostat: the global stability problem Original Research Nonlinear Analysis: Theory, Methods & Applications, pp.1017-1031, 1994.

Y. Higashi, N. Ytow, H. Saida, and H. Seki, In situ gradostat for the study of natural phytoplankton community with an experimental nutrient gradient Environmental Pollution, pp.99-395, 1998.

G. Hill and C. Robinson, Minimum tank volumes for CFST bioreactors in series, The Canadian Journal of Chemical Engineering, vol.52, issue.5, pp.818-824, 1989.
DOI : 10.1002/cjce.5450670513

W. Jaeger, J. So, B. Tang, and P. Waltman, Competition in the gradostat, Journal of Mathematical Biology, vol.22, issue.1, pp.23-42, 1987.
DOI : 10.1007/BF00275886

H. Jannash and R. Mateles, Experimental Bacterial Ecology Studied in Continuous Culture, Advanced in Microbial Physiology, vol.11, pp.165-212, 1974.
DOI : 10.1016/S0065-2911(08)60272-6

P. Lenas, N. Thomopoulos, D. Vayenas, and S. Pavlou, Oscillations of two competing microbial populations in configurations of two interconnected chemostats, Mathematical Biosciences, vol.148, issue.1, pp.43-63, 1998.
DOI : 10.1016/S0025-5564(97)10002-5

S. Levin, Dispersion and Population Interactions, The American Naturalist, vol.108, issue.960, pp.207-228, 1974.
DOI : 10.1086/282900

J. Larivì-ere, Microbial Ecology of Liquid Waste Treatment, Advances in Microbial Ecology, vol.1, pp.215-259, 1977.
DOI : 10.1007/978-1-4615-8219-9_5

B. Li, Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates, SIAM Journal on Applied Mathematics, vol.59, issue.2, pp.411-433, 1998.
DOI : 10.1137/S003613999631100X

M. Loreau, From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis, 2010.
DOI : 10.1515/9781400834167

M. Loreau, T. Daufresne, A. Gonzalez, D. Gravel, F. Guichard et al., Unifying sources and sinks in ecology and??Earth sciences, Biological Reviews, vol.329, issue.2, pp.365-79, 2013.
DOI : 10.1111/brv.12003

R. Lovitt and J. Wimpenny, The Gradostat: a Bidirectional Compound Chemostat and its Application in Microbiological Research, Microbiology, vol.127, issue.2, pp.261-268, 1981.
DOI : 10.1099/00221287-127-2-261

K. Luyben and J. Tramper, Optimal design for continuous stirred tank reactors in series using Michaelis-Menten kinetics, Biotechnology and Bioengineering, vol.44, issue.5, pp.1217-1220, 1982.
DOI : 10.1002/bit.260240518

R. Macarthur and E. Wilson, The Theory of Island Biogeography, 1967.
DOI : 10.1515/9781400881376

M. Mischaikow, H. Smith, and H. Thieme, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Transactions of the American Mathematical Society, vol.347, issue.5, pp.1669-1685, 1995.
DOI : 10.1090/S0002-9947-1995-1290727-7

J. Monod, LA TECHNIQUE DE CULTURE CONTINUE TH??ORIE ET APPLICATIONS, Annales de l'Institut Pasteur, vol.79, pp.390-410, 1950.
DOI : 10.1016/B978-0-12-460482-7.50023-3

S. Nakaoka and Y. Takeuchi, Competition in chemostat-type equations with two habitats, Mathematical Biosciences, vol.201, issue.1-2, pp.157-171, 2006.
DOI : 10.1016/j.mbs.2005.12.011

M. Nelson and H. Sidhu, Evaluating the performance of a cascade of two bioreactors, Chemical Engineering Science, vol.61, issue.10, pp.61-3159, 2006.
DOI : 10.1016/j.ces.2005.12.007

A. Novick and L. Szilard, Description of the Chemostat, Science, vol.112, issue.2920, pp.112-715, 1950.
DOI : 10.1126/science.112.2920.715

J. Pirt, Principles of Microbe and Cell Cultivation, Blackwell Scientific Publications, 1975.

A. Rapaport and J. Harmand, Biological control of the chemostat with non-monotonic response and different removal rates, Mathematical Biosciences and Engineering, vol.5, issue.3, pp.539-547, 2008.

A. Rapaport, J. Harmand, and F. Mazenc, Coexistence in the design of a series of two chemostats, Nonlinear Analysis: Real World Applications, vol.9, issue.3, pp.1052-1067, 2008.
DOI : 10.1016/j.nonrwa.2007.02.003

URL : https://hal.archives-ouvertes.fr/hal-00857811

A. Schaum, J. Alvarez, and T. Lopez-arenas, Saturated PI control of continuous bioreactors with, Haldane kinetics Chem. Eng. Science, pp.68-520, 2012.

H. Smith and B. Tang, Competition in the gradostat: the role of the communication rate, Journal of Mathematical Biology, vol.23, issue.2, pp.139-165, 1989.
DOI : 10.1007/BF00276100

H. Smith, P. Tang, and . Waltman, -Vessel Gradostat, SIAM Journal on Applied Mathematics, vol.51, issue.5, pp.1451-1471, 1991.
DOI : 10.1137/0151072

URL : https://hal.archives-ouvertes.fr/hal-00309731

H. Smith, P. Waltman, H. L. Smith, and . Waltman, The gradostat: A model of competition along a nutrient gradient, Microbial Ecology, vol.1, issue.1, pp.207-226, 1991.
DOI : 10.1007/BF02540224

H. Smith and P. Waltman, The theory of chemostat, dynamics of microbial competition, Cambridge Studies in Mathematical Biology, 1995.

H. Smith and P. Waltman, Competition in the periodic gradostat, Nonlinear Analysis: Real World Applications, vol.1, issue.1, pp.177-188, 2000.
DOI : 10.1016/S0362-546X(99)00400-9

G. Stephanopoulos and A. Fredrickson, Effect of spatial inhomogeneities on the coexistence of competing microbial populations, Biotechnology and Bioengineering, vol.16, issue.8, pp.1491-1498, 1979.
DOI : 10.1002/bit.260210817

B. Tang, Mathematical investigations of growth of microorganisms in the gradostat, Journal of Mathematical Biology, vol.297, issue.3, pp.319-339, 1986.
DOI : 10.1007/BF00275252

B. Tang, Competition Models in the Gradostat with General Nutrient Uptake Functions, Rocky Mountain Journal of Mathematics, vol.24, issue.1, pp.335-349, 1994.
DOI : 10.1216/rmjm/1181072469

H. Veldcamp, Ecological Studies with the Chemostat, Advances in Microbial Ecology, vol.1, pp.59-95, 1977.
DOI : 10.1007/978-1-4615-8219-9_2

G. Wolkowicz and Z. Lu, Global Dynamics of a Mathematical Model of Competition in the Chemostat: General Response Functions and Differential Death Rates, SIAM Journal on Applied Mathematics, vol.52, issue.1, pp.222-233, 1992.
DOI : 10.1137/0152012

D. Xiao and S. Ruan, Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response, SIAM Journal on Applied Mathematics, vol.61, issue.4, pp.11445-72, 2001.
DOI : 10.1137/S0036139999361896

A. Zaghrout, Asymptotic behavior of solutions of competition in gradostat with two limiting complementary substrates, Applied Mathematics and Computation, vol.49, issue.1, pp.19-37, 1992.
DOI : 10.1016/0096-3003(92)90054-5