V. Allard, J. F. Soussana, and R. Falcimagne, The role of grazing management for the net biome productivity and greenhouse gas budget (CO 2 , N 2 O and CH 4 ) of semi-natural grassland, Agriculture, Ecosystems and Environment, vol.121, pp.47-58, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191923

S. D. Allison, C. I. Czimczik, and K. K. Treseder, Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest, Global Change Biology, vol.14, pp.1156-1168, 2008.

J. S. Amthor, Terrestrial higher plant response to increasing atmospheric [CO 2 ] in relation to the global carbon cycle, Global Change Biology, vol.1, pp.243-274, 1995.

J. Balesdent, D. Derrien, and S. Fontaine, Contribution de la rhizodeposition aux mati eres organiques du sol, quelques implications pour la mod elisation de la dynamique du carbone, Etude et Gestion des Sols, vol.18, pp.201-216, 2011.

J. M. Barnola, D. Raynaud, A. Neftel, and H. Oeschger, Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice, Nature, vol.303, pp.410-413, 1983.

S. T. Bates, D. Berg-lyons, J. G. Caporaso, W. A. Walters, R. Knight et al., Examining the global distribution of dominant archaeal populations in soil, ISME Journal, vol.5, pp.908-917, 2011.

C. W. Bingeman, J. E. Varner, and W. P. Martin, The effect of the addition of organic materials on the decomposition of an organic soil, Soil Science Society of America Journal, vol.17, pp.34-38, 1953.

E. Blagodatskaya, S. Blagodatsky, T. Anderson, and Y. Kuzyakov, Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies, Applied Soil Ecology, vol.37, pp.95-105, 2007.

E. Blagodatskaya, S. Blagodatskaya, M. Dorodnikov, and Y. Kuzyakov, Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments, Global Change Biology, vol.16, pp.836-848, 2010.

S. Blagodatskaya, E. Blagodatskaya, T. Yuyukina, and Y. Kuzyakov, Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition, Soil Biology & Biochemistry, vol.42, pp.1275-1283, 2010.

R. D. Bowden, E. Davidson, K. Savage, K. Arabia, and P. Steudler, Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard forest, Forest Ecology and Management, vol.196, pp.43-56, 2004.

M. Cao and F. I. Woodward, Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change, Global Change Biology, vol.4, pp.185-198, 1998.

M. Cao and F. I. Woodward, Dynamic responses of terrestrial ecosystem carbon cycling to global climate change, Nature, vol.393, pp.249-252, 1998.

K. M. Carney, B. A. Hungate, B. G. Drake, and J. P. Megonigal, Altered soil microbial community at elevated CO2 leads to loss of soil carbon, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.4990-4995, 2007.

M. M. Carreiro, R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst, Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition, Ecology, vol.81, pp.2359-2365, 2000.

W. X. Cheng, D. W. Johnson, and S. L. Fu, Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization, Soil Science Society of America Journal, vol.67, pp.1418-1427, 2003.

F. A. Dijkstra and W. Cheng, Interactions between soil and tree roots accelerate longterm soil carbon decomposition, Ecology Letters, vol.10, pp.1046-1053, 2007.

F. A. Dijkstra, N. E. Bader, D. W. Johnson, and W. Cheng, Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability?, Soil Biology and Biochemistry, vol.41, pp.1080-1087, 2009.

F. A. Dijkstra, G. L. Hutchinson, J. D. Reeder, D. R. Lecain, and J. A. Morgan, Elevated CO 2 , but not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland, Soil Biology & Biochemistry, vol.43, pp.2247-2256, 2011.

J. E. Drake, A. Gallet-budynek, and K. S. Hofmockel, Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO 2, Ecology Letters, vol.14, pp.349-357, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652586

G. V. Dyke, B. J. George, A. E. Johnston, P. R. Poulton, and A. D. Todd, The Broadbalk wheat experiment 1968-78: yields and plant nutrients in crops grown continuously and in rotation, pp.5-44, 1982.

A. C. Finzi, R. L. Sinsabaugh, T. M. Long, and M. P. Osgood, Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest, Ecosystems, vol.9, pp.215-226, 2006.

S. Fontaine and S. Barot, Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation, Ecology Letters, vol.8, pp.1075-1087, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681367

S. Fontaine, A. Mariotti, and L. Abbadie, The priming effect of organic matter: a question of microbial competition?, Soil Biology & Biochemistry, vol.35, pp.837-843, 2003.

S. Fontaine, G. Bardoux, D. Benest, B. Verdier, A. Mariotti et al., Mechanisms of the priming effect in a savannah soil amended with cellulose, Soil Science Society of America Journal, vol.68, pp.125-131, 2004.

S. Fontaine, G. Bardoux, L. Abbadie, and A. Mariotti, Carbon input to soil may decrease soil carbon content, Ecology Letters, vol.7, pp.314-320, 2004.

S. Fontaine, S. Barot, P. Barre, N. Bdioui, B. Mary et al., Stability of organic carbon in deep soil layers controlled by fresh carbon supply, Nature, vol.450, pp.277-280, 2007.
URL : https://hal.archives-ouvertes.fr/bioemco-00176100

S. Fontaine, C. Henault, and A. Aamor, Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect, Soil Biology & Biochemistry, vol.43, pp.86-96, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652602

J. Gignoux, J. House, D. Hall, D. Masse, H. B. Nacro et al., Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model, Global Ecology and Biogeography, vol.10, pp.639-660, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02456465

D. S. Goll, V. Brovkin, and B. R. Parida, Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosceinces, vol.9, pp.3547-3569, 2012.

B. Guenet, C. Neill, G. Bardoux, and L. Abbadie, Is there a linear relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecology, vol.46, pp.436-442, 2010.

F. Hagedorn, D. Spinnler, and R. Siegwolf, Increased N deposition retards mineralization of old soil organic matter, Soil Biology & Biochemistry, vol.35, pp.1683-1692, 2003.

M. Heimann and M. Reichstein, Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, vol.451, pp.289-292, 2008.

S. H-enin and M. Dupuis, Essai de bilan de la mati ere organique du sol, Annales Agronomiques, vol.15, pp.17-29, 1945.

M. R. Hoosbeek, M. Lukac, and D. Van-dam, More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect?, Global Biogeochemical Cycles, vol.18, p.1040, 2004.

E. Inselsbacher, W. Wanek, J. Strauss, and S. Zechmeister-boltenstern, A novel 15 N tracer model reveals: plant nitrate uptake governs nitrogen transformation rates in agricultural soils, Soil Biology & Biochemistry, vol.57, pp.301-310, 2013.

C. M. Iversen, J. K. Keller, C. T. Garten, and R. J. Norby, Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment, Global Change Biology, vol.18, pp.1684-1697, 2012.

H. Jenny, Factors of Soil Formation. A System of Quantitative Pedology, 1941.

A. E. Johnston, P. R. Poulton, and K. Coleman, Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes, Advances in Agronomy, vol.101, pp.1-57, 2009.

D. R. Keeney and J. L. Hatfield, The nitrogen cycle, historical perspective, and current and potential future concerns, Nitrogen in the Environment Sources, Problems and Management, pp.1-18, 2008.

C. A. Kirkby, A. E. Richardson, L. J. Wade, G. D. Batten, C. Blanchard et al., Carbon-nutrient stoichiometry to increase soil carbon sequestration, Soil Biology & Biochemistry, vol.60, pp.77-86, 2013.

M. Kirschbaum, B. E. Medlyn, and D. A. King, Modelling forest-growth response to increasing CO 2 concentration in relation to various factors affecting nutrient supply, Global Change Biology, vol.4, pp.23-41, 1998.

K. Klumpp, S. Fontaine, E. Attard, L. Roux, X. Gleixner et al., Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community, Journal of Ecology, vol.97, pp.876-885, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00523770

K. Klumpp, T. Tallec, N. Guix, and J. F. Soussana, Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture, Global Change Biology, vol.17, pp.3534-3545, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02645969

J. H. Knops and D. Tilman, Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment, Ecology, vol.81, pp.88-89, 2000.

A. D. Kofoed and O. Nemming, Askov 1894 -fertilizers and manure on sandy and loamy soils, Annales Agronomiques, vol.27, pp.583-610, 1976.

C. K?-orner, J. A. Arnone, and . Iii, Responses to elevated carbon dioxide in artificial tropical ecosystems, Science, vol.257, pp.1672-1675, 1992.

K. Kramer, I. Leionen, and H. H. Bartelink, Evaluation of six process-based forest growth models using eddy-covariance measurements of CO 2 and H 2 O fluxes at six forest sites in Europe, Global Change Biology, vol.8, pp.213-230, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02677385

G. Krinner, N. Viovy, and N. De-noblet-ducoudre, A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, vol.19, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00374606

Y. Kuzyakov, J. K. Friedel, and K. Stahr, Review of mechanisms and quantification of priming effects, Soil Biology & Biochemistry, vol.32, pp.1485-1498, 2000.

J. X. Liu, D. Q. Zhang, G. Y. Zhou, B. Faivre-vuillin, Q. Deng et al., CO 2 enrichment increases N leaching from model forest ecosystems in subtropical China, Biogeoscience, vol.5, pp.1783-1795, 2008.

P. Loiseau and J. F. Soussana, Elevated [CO2], temperature increase and N supply effects on the accumulation of below-ground carbon in a temperate grassland ecosystem, Plant and Soil, vol.212, pp.123-134, 1999.

E. I. Lord, S. G. Anthony, and G. Goodlass, Agricultural nitrogen balance and water quality in the UK. Soil Use and Management, vol.18, pp.363-369, 2002.

Y. A. Martel and E. A. Paul, The use of radiocarbon dating of organic matter in the study of soil genesis, Soil Science Society of America Journal, vol.38, pp.501-506, 1974.

B. Mary, S. Recous, D. Darwis, and D. Robin, Interactions between decomposition of plant residues and nitrogen cycling in soil, Plant and Soil, vol.181, pp.71-82, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02684633

L. Mattsson, Swedish Long-Term Experiments with N, P and K.1. Yield Results, Swedish Journal of Agricultural Research, vol.4, pp.153-160, 1987.

L. Mattsson, Swedish Long-Term Experiments with N, P and K.2. Soil Data and Plant Nutrient Balances, Swedish Journal of Agricultural Research, vol.4, pp.161-167, 1987.

W. B. Mcgill, Review and classification of ten soil organic matter (SOM) models. In: Evaluation of Soil Organic Matter Models, pp.111-132, 1996.

D. Menge and C. B. Field, Simulated global changes alter phosphorus demand in annual grassland, Global Change Biology, vol.13, pp.2582-2591, 2007.

C. Neill and J. Gignoux, Soil organic matter decomposition driven by microbial growth: a simple model for a complex network of interactions, Soil Biology & Biochemistry, vol.38, pp.803-811, 2006.

C. Neill and B. Guenet, Comparing two mechanistic formalisms for soil organic dynamics: a test with in vitro priming effect observations, Soil Biology & Biochemistry, vol.42, pp.1212-1221, 2010.

C. Nguyen, Rhizodeposition of organic C by plant: mechanisms and control, vol.23, pp.375-396, 2003.

A. T. Nottingham, H. Griffiths, P. M. Chamberlain, A. W. Stott, and E. Tanner, Soil priming by sugar and leaf-litter substrates: a link to microbial groups, Applied Soil Ecology, vol.42, pp.183-190, 2009.

R. Oren, D. S. Ellsworth, and K. H. Johnsen, Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, vol.411, pp.469-472, 2001.

N. Pascault, L. Ranjard, and A. Kaisermann, Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect, Ecosystems, vol.16, pp.810-822, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00847889

E. A. Paul and F. E. Clark, Soil Microbiology and Biochemistry, 1989.

R. P. Phillips, I. C. Meier, E. S. Bernhardt, A. S. Grandy, K. Wickings et al., Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2, Ecology Letters, vol.15, pp.1042-1049, 2012.

C. Picon-cochard, R. Pilon, E. Tarroux, L. Pag-es, J. Robertson et al., Effect of species, root branching order and season on the root traits of 13 perennial grass species, Plant and Soil, vol.353, pp.47-57, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02652312

K. S. Ramirez, C. L. Lauber, R. Knight, M. A. Bradford, and N. Fierer, Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems, Ecology, vol.91, pp.3463-3470, 2010.

K. S. Ramirez, J. M. Craine, and N. Fierer, Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes, Global Change Biology, vol.18, pp.1918-1927, 2012.

P. E. Rasmussen, K. Goulding, J. R. Brown, P. R. Grace, H. H. Janzen et al., , 1998.

, Agroecosystem-Long-term agroecosystem experiments: assessing agricultural sustainability and global change, Science, vol.282, pp.893-896

S. Recous, D. Robin, D. Darwis, and B. Mary, Interactions between decomposition of plant residues and nitrogen cycling in soil, Soil Biology & Biochemistry, vol.27, pp.1529-1538, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02684633

S. Recous, P. Loiseau, J. M. Machet, B. Mary, P. Inra et al., Is there a theoretical limit to soil carbon storage in old-growth forests? A model analysis with contrasting approaches, Maîtrise de l'azote dans les agrosyst emes, pp.267-281, 1996.

J. Sanderman, R. G. Amundson, and D. D. Baldocchi, Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time, Global Biogeochemical Cycles, vol.17, p.1029, 2003.

J. P. Schimel and M. N. Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biology & Biochemistry, vol.35, pp.549-563, 2003.

W. H. Schlesinger, Evidence from chronosequence studies for a low carbon-storage potential of soils, Nature, vol.348, pp.232-234, 1990.

T. Shahzad, C. Chenu, C. Repincay, C. Mougin, J. L. Ollier et al., Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species, Soil Biology & Biochemistry, vol.51, pp.73-80, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01567161

J. Sierra and P. Nygren, Role of root inputs from a dinitrogen-fixing tree in soil carbon and nitrogen sequestration in a tropical agroforestry system, Australian Journal of Soil Research, vol.43, pp.667-675, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02678594

J. C. Simon, J. L. Peyraud, M. L. Decau, L. Delaby, F. Vertes et al., Gestion de l'azote dans les syst emes prairiaux pâtur es permanentes ou de longe dur ee, pp.201-216, 1996.

P. Smith, J. U. Smith, and D. S. Powlson, A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, vol.81, pp.153-225, 1997.

A. P. Sokolov, D. W. Kicklighter, J. M. Melillo, B. S. Felzer, C. A. Schlosser et al., Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle, Journal of Climate, vol.21, pp.3776-3796, 2008.

J. K. Syers, J. A. Adams, and T. W. Walker, Accumulation of organic matter in a chronosequence of soils developed on wind-blown sand in New Zealand, European Journal of Soil Science, vol.21, pp.146-153, 1970.

A. F. Talhelm, K. S. Pregitzer, and D. R. Zak, Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon, Ecology Letters, vol.12, pp.1219-1228, 2009.

K. J. Van-groenigen, J. Six, B. A. Hungate, M. A. De-graaff, N. Van-breemen et al., Element interactions limit soil carbon storage, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.6571-6574, 2006.

P. M. Vitousek and R. W. Howarth, Nitrogen limitation on land and in the sea -how can it occur, Biogeochemistry, vol.13, pp.87-115, 1991.

M. D. Wallenstein and M. N. Weintraub, Emerging tools for measuring and modelling the in situ activity of soil extracellular enzymes, Soil Biology & Biochemistry, vol.40, pp.2098-2106, 2008.

J. Wu, P. C. Brookes, and D. S. Jenkinson, Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil, Soil Biology & Biochemistry, vol.25, pp.1435-1441, 1993.

T. Wutzler and M. Reichstein, Colimitation of decomposition by substrate and decomposers -a comparison of model formulations, Biogeosciences, vol.5, pp.749-759, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297694