P. L. Auer and R. W. Doerge, A two-stage Poisson model for testing RNA-seq data, Statistical Applications in Genetics and Molecular, vol.10, p.26, 2011.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, p.106, 2010.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-179, 2010.

F. M. Giorgi, D. Fabbro, C. Licausi, and F. , Comparative study of RNA-seq and Microarray-derived coexpression networks in Arabidopsis thaliana, Bioinformatics, vol.29, pp.717-741, 2013.

S. Hong, X. Chen, J. L. Xiong, and M. , Canonical correlation analysis for RNA-seq co-expression networks, Nucleic Acids Research, vol.41, p.95, 2013.

O. D. Iancu, S. Kawane, D. Bottomly, R. Searles, and R. Hitzemann, Utilizing RNA-Seq data for de novo coexpression network inference, Bioinformatics, vol.28, pp.1592-1599, 2012.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, pp.432-441, 2008.

N. Meinshausen and P. Buhlmann, High-dimensional graphs and variable selection with the lasso, The Annals of Statistics, vol.34, pp.1436-1462, 2006.

Y. Cai, B. Fendler, G. S. Atwal, Q. Biology, and C. S. Harbor, Utilizing RNA-Seq Data for Cancer Network Inference, IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS, pp.1-4, 2012.

G. Box and D. Cox, An analysis of transformations, Journal of the Royal Statistical Society Series B, vol.26, pp.211-252, 1964.

G. I. Allen and Z. Liu, A log-linear graphical model for inferring genetic networks from highthroughput sequencing data, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2012.

J. Li, D. M. Witten, I. M. Johnstone, and R. Tibshirani, Normalization, testing, and false discovery rate estimation for RNA sequencing data, Biostatistics, vol.13, pp.523-561, 2012.

D. Karlis and L. Meligkotsidou, Multivariate poisson regression with covariance structure, Statistics and Computing, vol.15, pp.255-265, 2005.

J. Whittaker, Graphical Models in Applied Multivariate Statistics, 1990.

C. Giraud, S. Huet, and N. Verzelen, Graph selection with ggmselect, Statistical Applications in Genetics and Molecular Biology, vol.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00401550

G. Schwarz, Estimating the dimension of a model, The Annals of Statistics, vol.6, pp.461-464, 1978.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, Journal of statistical software, vol.33, pp.1-22, 2010.

N. Schelldorfer, L. Meier, and P. Buhlmann, GLMMLasso: An algorithm for high-dimensional generalized linear mixed models using L1-penalization, Journal of Computational and Graphical Statistics, pp.1-20, 2012.

N. Verzelen, Minimax risks for sparse regressions: Ultra-high dimensional phenomenon, Electronic Journal of Statistics, vol.6, pp.38-90, 2012.

P. Erdos and A. Rényi, On Random Graphs, Publicationes Mathematicae, vol.6, pp.419-427, 1959.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, vol.11, 2010.

S. S. Shapiro and M. B. Wilk, An analysis of variance test for normality, Biometrika, vol.52, p.561, 1965.

D. M. Witten, Classification and clustering of sequencing data using a poisson model, The Annals of Applied Statistics, vol.5, pp.2493-2518, 2011.

J. Guo, E. Levina, G. Michailidis, and J. Zhu, Joint estimation of multiple graphical models, Biometrika, vol.98, pp.1-15, 2011.

M. Bastian, S. Heymann, and M. Jacomy, Gephi: An open source software for exploring and manipulating networks, International AAAI Conference on Weblogs and Social Media, 2009.

O. Kovalchuk, J. Filkowski, J. Meservy, Y. Ilnytskyy, and V. P. Tryndyak, Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin, Molecular Cancer Therapeutics, vol.7, pp.2152-2161, 2008.

M. E. Peter, Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression, Cell Cycle, vol.8, pp.843-52, 2009.

T. Dalmay and D. R. Edwards, MicroRNAs and the hallmarks of cancer, Oncogene, vol.25, pp.6170-6175, 2006.

C. Zou and Q. Xu, miR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF, Cell Cycle, vol.11, pp.2137-2182, 2012.

N. Srivastava, S. Manvati, A. Srivastava, R. Pal, and P. Kalaiarasan, miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention, Breast Cancer Research, vol.13, p.39, 2011.

P. A. Gregory, A. G. Bert, E. L. Paterson, S. C. Barry, and A. Tsykin, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nature Cell Biology, vol.10, pp.593-601, 2008.

S. Espinosa, C. E. Slack, and F. J. , The role of microRNAs in cancer, Yale Journal of Biology and Medicine, vol.79, pp.131-171, 2006.