M. C. Perombelon, Potato diseases caused by soft rot erwinias: an overview of pathogenesis, Plant Pathology, vol.104, issue.2, pp.1-12, 2002.
DOI : 10.1146/annurev.phyto.30.1.67

L. Hauben, E. R. Moore, L. Vauterin, M. Steenackers, J. Mergaert et al., Phylogenetic Position of Phytopathogens within the Enterobacteriaceae, Systematic and Applied Microbiology, vol.21, issue.3, pp.384-397, 1998.
DOI : 10.1016/S0723-2020(98)80048-9

I. K. Toth, K. S. Bell, M. C. Holeva, and P. R. Birch, Soft rot erwiniae: from genes to genomes, Molecular Plant Pathology, vol.15, issue.1, pp.17-30, 2003.
DOI : 10.1126/science.1066804

R. Czajkowski, M. C. Pérombelon, J. A. Van-veen, and J. M. Van-der-wolf, Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review, Plant Pathology, vol.76, issue.6, pp.999-1013, 2011.
DOI : 10.1111/j.1365-3059.2011.02470.x

R. Czajkowski, G. Grabe, and J. Wolf, Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes, European Journal of Plant Pathology, vol.19, issue.2, pp.263-275, 2009.
DOI : 10.1007/s10658-009-9480-9

H. H. El-hendawy, I. M. Zeid, and Z. K. Mohamed, The biological control of soft rot disease in melon caused by Erwinia carotovora subsp.carotovora using Pseudomonas fluorescens, Microbiological Research, vol.153, issue.1, pp.55-60, 1998.
DOI : 10.1016/S0944-5013(98)80021-9

D. Cronin, Y. Moënne-loccoz, A. Fenton, C. Dunne, D. N. Dowling et al., Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica, FEMS Microbiology Ecology, vol.23, issue.2, pp.95-106, 1997.
DOI : 10.1111/j.1574-6941.1997.tb00394.x

G. Fu, S. Huang, Y. Ye, Y. Wu, Z. Cen et al., Characterization of a bacterial biocontrol strain B106 and its efficacies on controlling banana leaf spot and post-harvest anthracnose diseases, Biological Control, vol.55, issue.1, pp.1-10, 2010.
DOI : 10.1016/j.biocontrol.2010.05.001

A. Crépin, C. Barbey, A. Cirou, M. Tannières, N. Orange et al., Biological control of pathogen communication in the rhizosphere: A novel approach applied to potato soft rot due to Pectobacterium atrosepticum, Plant and Soil, vol.64, issue.1-2, pp.27-37, 2012.
DOI : 10.1007/s11104-011-1030-5

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.308, issue.7117, pp.323-329, 2006.
DOI : 10.1038/nature05286

A. A. Gust, F. Brunner, and T. Nürnberger, Biotechnological concepts for improving plant innate immunity, Current Opinion in Biotechnology, vol.21, issue.2, pp.204-210, 2010.
DOI : 10.1016/j.copbio.2010.02.004

T. J. Evans, A. Ind, E. Komitopoulou, and G. P. Salmond, Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence, J. Appl. Microbiol, vol.109, pp.505-514, 2010.

I. B. Gerber and I. A. Dubery, Protein phosphorylation in Nicotiana tabacum cells in response to perception of lipopolysaccharides from Burkholderia cepacia, Phytochemistry, vol.65, issue.22, pp.2957-2966, 2004.
DOI : 10.1016/j.phytochem.2004.09.005

S. Desender, O. Klarzynski, P. Potin, M. Barzic, D. Andrivon et al., Lipopolysaccharides of Pectobacterium atrosepticum and Pseudomonas corrugata Induce Different Defence Response Patterns in Tobacco, Tomato, and Potato, Plant Biology, vol.5, issue.5, pp.636-645, 2006.
DOI : 10.1016/j.biotechadv.2005.01.003

G. Erbs and M. Newman, The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity, Molecular Plant Pathology, vol.125, issue.1, pp.95-104, 2012.
DOI : 10.1111/j.1364-3703.2011.00730.x

N. R. Chalfoun, A. P. Castagnaro, and J. C. Díaz-ricci, Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry, Biological Control, vol.58, issue.3, pp.319-329, 2011.
DOI : 10.1016/j.biocontrol.2011.05.007

F. Val, S. Desender, K. Bernard, P. Potin, G. Hamelin et al., Primes Defense Reaction in Potato Cell Suspensions, Phytopathology, vol.98, issue.6, pp.653-658, 2008.
DOI : 10.1094/PHYTO-98-6-0653

URL : https://hal.archives-ouvertes.fr/hal-00729828

G. Saubeau, S. Goulitquer, D. Barloy, P. Potin, D. Andrivon et al., Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors, Plant Cell Reports, vol.43, issue.3, pp.579-589, 2013.
DOI : 10.1007/s00299-012-1377-y

URL : https://hal.archives-ouvertes.fr/hal-01208631

A. Kröner, G. Hamelin, D. Andrivon, and F. Val, Quantitative Resistance of Potato to Pectobacterium atrosepticum and Phytophthora infestans: Integrating PAMP-Triggered Response and Pathogen Growth, PLoS ONE, vol.73, issue.8, 2011.
DOI : 10.1371/journal.pone.0023331.t001

T. Yangui, S. Sayadi, and A. Dhouib, Sensitivity of Pectobacterium carotovorum to hydroxytyrosol-rich extracts and their effect on the development of soft rot in potato tubers during storage, Crop Protection, vol.53, pp.52-57, 2013.
DOI : 10.1016/j.cropro.2013.06.014

E. M. Wood, T. D. Miles, and P. S. Wharton, The use of natural plant volatile compounds for the control of the potato postharvest diseases, black dot, silver scurf and soft rot, Biological Control, vol.64, issue.2, pp.152-159, 2013.
DOI : 10.1016/j.biocontrol.2012.10.014

S. P. Thapa, H. J. Lee, D. H. Park, S. Kim, J. M. Cho et al., Antiviral Effects of the Culture Filtrate from Serratia marcescens Gsm01, against Cucumber mosaic virus (CMV), The Plant Pathology Journal, vol.25, issue.4, pp.369-375, 2009.
DOI : 10.5423/PPJ.2009.25.4.369

Q. Li, Y. Jiang, P. Ning, L. Zheng, J. Huang et al., Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1, Biological Control, vol.58, issue.2, pp.139-148, 2011.
DOI : 10.1016/j.biocontrol.2011.04.013

A. Kröner, N. Marnet, D. Andrivon, and F. Val, Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens, Plant Physiology and Biochemistry, vol.57, pp.23-31, 2012.
DOI : 10.1016/j.plaphy.2012.05.006

H. S. Bariya, V. R. Thakkar, A. N. Thakkar, and R. B. Subramanian, Induction of systemic resistance in different varieties of Solanum tuberosum by pure and crude elicitor treatment, Indian J. Exp. Biol, vol.49, pp.151-162, 2011.

C. Nespoulous, J. Huet, and J. Pernollet, Structure-function relationships of ? and ? elicitins, signal proteins involved in the plant-Phytophthora interaction, Planta, vol.186, issue.4, pp.551-557, 1992.
DOI : 10.1007/BF00198035

Y. Tirilly and J. P. Blein, Are elicitins cryptograms in plant-Oomycete communications?, Cell. Mol. Life Sci, vol.56, pp.1020-1047, 1999.

S. Kamoun, P. Van-west, A. J. De-jong, K. E. De-groot, V. G. Vleeshouwers et al., Is Down-Regulated During Infection of Potato, Molecular Plant-Microbe Interactions, vol.10, issue.1, pp.13-20, 1997.
DOI : 10.1094/MPMI.1997.10.1.13

S. Kamoun, P. Hraber, B. Sobral, D. Nuss, and F. Govers, Initial Assessment of Gene Diversity for the Oomycete Pathogen Phytophthora infestans Based on Expressed Sequences, Fungal Genetics and Biology, vol.28, issue.2, pp.94-106, 1999.
DOI : 10.1006/fgbi.1999.1166

R. H. Jiang, B. M. Tyler, S. C. Whisson, A. R. Hardham, and F. Govers, Ancient Origin of Elicitin Gene Clusters in Phytophthora Genomes, Molecular Biology and Evolution, vol.23, issue.2, pp.338-351, 2006.
DOI : 10.1093/molbev/msj039

C. Rusterucci, V. Stallaert, M. L. Milat, A. Pugin, P. Ricci et al., Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana, Plant Physiology, vol.111, issue.3, pp.885-891, 1996.
DOI : 10.1104/pp.111.3.885

C. Medeira, V. Quartin, I. Maia, I. Diniz, M. C. Matos et al., Cryptogein and capsicein promote defence responses in Quercus suber against Phytophthora cinnamomi infection, European Journal of Plant Pathology, vol.95, issue.3, pp.145-159, 2012.
DOI : 10.1007/s10658-012-9972-x

O. Klarzynski, B. Plesse, J. Joubert, J. Yvin, M. Kopp et al., Linear ??-1,3 Glucans Are Elicitors of Defense Responses in Tobacco, Plant Physiology, vol.124, issue.3, pp.1027-1038, 2000.
DOI : 10.1104/pp.124.3.1027

O. Klarzynski, V. Descamps, B. Plesse, J. Yvin, B. Kloareg et al., Sulfated Fucan Oligosaccharides Elicit Defense Responses in Tobacco and Local and Systemic Resistance Against Tobacco Mosaic Virus, Molecular Plant-Microbe Interactions, vol.16, issue.2, pp.115-122, 2003.
DOI : 10.1094/MPMI.2003.16.2.115

J. Vera, J. Castro, A. Gonzalez, and A. Moenne, Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants, Marine Drugs, vol.9, issue.12, pp.2514-2525, 2011.
DOI : 10.3390/md9122514

E. A. Wolski, S. Maldonado, G. R. Daleo, and A. B. Andreu, A novel ??-1, 3-glucan elicits plant defense responses in potato and induces protection against Rhizoctonia solani AG-3 and Fusarium solani f. sp. eumartii, Physiological and Molecular Plant Pathology, vol.69, issue.1-3, pp.93-103, 2006.
DOI : 10.1016/j.pmpp.2007.02.001

K. Simões, S. M. Dietrich, M. G. Hahn, and M. R. Braga, Purification and characterization of a phytoalexin elicitor from spores of the saprobe Mucor ramosissimus, Revista Brasileira de Bot??nica, vol.28, issue.4, pp.735-744, 2005.
DOI : 10.1590/S0100-84042005000400008