S. Bowers, B. Ludascher, A. H. Ngu, and T. Critchlow, Enabling scientific workflow reuse through structured composition of dataflow and control-flow, ICDE Workshops, pp.70-70, 2006.

J. Brandt, M. Bux, and U. Leser, A functional language for large scale scientific data analysis, BeyongMR, ICDT/EDBT Workshop, 2015.

V. Curcin and M. Ghanem, Scientific workflow systems - can one size fit all?, 2008 Cairo International Biomedical Engineering Conference, pp.1-9, 2008.
DOI : 10.1109/CIBEC.2008.4786077

S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. Mcphillips et al., Provenance in scientific workflow systems, IEEE Data Eng. Bull, vol.30, issue.4, pp.44-50, 2007.

J. Dias, G. Guerra, F. Rochinha, A. L. Coutinho, P. Valduriez et al., Data-centric iteration in dynamic workflows, Future Generation Computer Systems, vol.46, 2014.
DOI : 10.1016/j.future.2014.10.021

URL : https://hal.archives-ouvertes.fr/lirmm-01073638

J. Dias, E. Ogasawara, D. De-oliveira, F. Porto, P. Valduriez et al., Algebraic dataflows for big data analysis, 2013 IEEE International Conference on Big Data, pp.150-155, 2013.
DOI : 10.1109/BigData.2013.6691567

E. Elmroth, F. Hernández, and J. Tordsson, Three fundamental dimensions of scientific workflow interoperability: Model of computation, language, and execution environment, Future Generation Computer Systems, vol.26, issue.2, pp.245-256, 2010.
DOI : 10.1016/j.future.2009.08.011

J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger et al., Managing Rapidly-Evolving Scientific Workflows, Proc. of IPAW, pp.10-18, 2006.
DOI : 10.1007/11890850_2

J. Goecks, A. Nekrutenko, and J. Taylor, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biology, vol.11, issue.8, p.86, 2010.
DOI : 10.1186/gb-2010-11-8-r86

G. Hammer, M. Cooper, F. Tardieu, S. Welch, B. Walsh et al., Models for navigating biological complexity in breeding improved crop plants, Trends in Plant Science, vol.11, issue.12, pp.11587-593, 2006.
DOI : 10.1016/j.tplants.2006.10.006

P. M. Kelly, P. D. Coddington, and A. L. Wendelborn, Lambda calculus as a workflow model, Concurrency and Computation: Practice and Experience, pp.1999-2017, 2009.

M. Lucas, K. Kenobi, D. Von-wangenheim, U. Vo?, K. Swarup et al., Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues, Proc. of the Nat. Academy of Sciences, pp.1105229-5234, 2013.
DOI : 10.1073/pnas.1210807110

URL : https://hal.archives-ouvertes.fr/cea-00848569

B. Ludäscher and I. Altintas, On providing declarative design and programming constructs for scientific workflows based on process networks, 2003.

C. D. Messina, D. Podlich, Z. Dong, M. Samples, and M. Cooper, Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance, Journal of Experimental Botany, vol.62, issue.3, pp.855-868, 2011.
DOI : 10.1093/jxb/erq329

B. Parent and F. Tardieu, Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?, Journal of Experimental Botany, vol.65, issue.21, pp.656179-6189, 2014.
DOI : 10.1093/jxb/eru223

C. Pradal, S. Dufour-kowalski, F. Boudon, C. Fournier, and C. Godin, OpenAlea: a visual programming and component-based software platform for plant modelling, Functional Plant Biology, vol.35, issue.10, pp.751-760, 2008.
DOI : 10.1071/FP08084

G. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, Ten Simple Rules for Reproducible Computational Research, PLoS Computational Biology, vol.8, issue.10, p.1003285, 2013.
DOI : 10.1371/journal.pcbi.1003285

H. Shen, Interactive notebooks: Sharing the code, Nature, vol.515, issue.7525, pp.151-152, 2014.
DOI : 10.1038/515151a

D. Turi, P. Missier, C. Goble, D. De-roure, and T. Oinn, Taverna Workflows: Syntax and Semantics, Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007), pp.441-448, 2007.
DOI : 10.1109/E-SCIENCE.2007.71