A. Tromas and C. Perrot-rechenmann, Recent progress in auxin biology, Comptes Rendus Biologies, vol.333, issue.4, pp.297-306, 2010.
DOI : 10.1016/j.crvi.2010.01.005

J. Giovannoni, Fruit ripening mutants yield insights into ripening control, Current Opinion in Plant Biology, vol.10, issue.3, pp.283-292, 2007.
DOI : 10.1016/j.pbi.2007.04.008

URL : https://naldc.nal.usda.gov/naldc/download.xhtml?id=9190&content=PDF

J. Cohen, In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening, J Am Soc Hortic Sci, vol.121, pp.520-524, 1996.

C. Davies, P. Boss, and S. Robinson, Treatment of Grape Berries, a Nonclimacteric Fruit with a Synthetic Auxin, Retards Ripening and Alters the Expression of Developmentally Regulated Genes, Plant Physiology, vol.115, issue.3, pp.1155-61, 1997.
DOI : 10.1104/pp.115.3.1155

N. Given, M. Venis, and D. Grierson, Hormonal regulation of ripening in the strawberry, a non-climacteric fruit, Planta, vol.23, issue.3, pp.402-408, 1988.
DOI : 10.1007/BF00959527

M. Vendrell, Dual effect of 2, 4-D on ethylene production and ripening of tomato fruit tissue, Physiologia Plantarum, vol.23, issue.4, pp.559-63, 1985.
DOI : 10.1086/335286

G. Muday, A. Rahman, and B. Binder, Auxin and ethylene: collaborators or competitors? Trends Plant Science, pp.181-95, 2012.
DOI : 10.1016/j.tplants.2012.02.001

M. Ecarnot, P. Baczyk, L. Tessarotto, and C. Chervin, Rapid phenotyping of the tomato fruit model, Micro-Tom, with??a??portable VIS???NIR spectrometer, Plant Physiology and Biochemistry, vol.70, pp.159-63, 2013.
DOI : 10.1016/j.plaphy.2013.05.019

P. Fraser, M. Truesdale, C. Bird, W. Schuch, and P. Bramley, Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression), Plant Physiology, vol.105, issue.1, pp.405-418, 1994.
DOI : 10.1104/pp.105.1.405

I. Egea, W. Bian, C. Barsan, A. Jauneau, J. Pech et al., Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue, Annals of Botany, vol.108, issue.2, pp.291-298, 2011.
DOI : 10.1093/aob/mcr140

J. Hirschberg, Carotenoid biosynthesis in flowering plants, Current Opinion in Plant Biology, vol.4, issue.3, pp.210-218, 2001.
DOI : 10.1016/S1369-5266(00)00163-1

G. Giuliano, Plant carotenoids: genomics meets multi-gene engineering, Current Opinion in Plant Biology, vol.19, pp.111-118, 2014.
DOI : 10.1016/j.pbi.2014.05.006

URL : http://doi.org/10.1016/j.pbi.2014.05.006

K. Ji, K. W. Zhao, B. Sun, Y. Yuan, B. Dai et al., SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening, Journal of Experimental Botany, vol.65, issue.18, pp.5243-55, 2014.
DOI : 10.1093/jxb/eru288

G. Giuliano, G. Bartley, and P. Scolnik, Regulation of Carotenoid Biosynthesis during Tomato Development, THE PLANT CELL ONLINE, vol.5, issue.4, pp.379-87, 1993.
DOI : 10.1105/tpc.5.4.379

E. Fantini, G. Falcone, S. Frusciante, L. Giliberto, and G. Giuliano, Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing, PLANT PHYSIOLOGY, vol.163, issue.2, pp.986-98, 2013.
DOI : 10.1104/pp.113.224733

C. Martel, J. Vrebalov, P. Tafelmeyer, and J. Giovannoni, The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner, PLANT PHYSIOLOGY, vol.157, issue.3, pp.1568-79, 2011.
DOI : 10.1104/pp.111.181107

M. Fujisawa, T. Nakano, Y. Shima, and Y. Ito, A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening, The Plant Cell, vol.25, issue.2, pp.371-86, 2013.
DOI : 10.1105/tpc.112.108118

G. Ronen, M. Cohen, D. Zamir, and J. Hirschberg, Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutantDelta, The Plant Journal, vol.62, issue.4, pp.341-51, 1999.
DOI : 10.1016/0014-5793(95)00368-J

G. Ronen, L. Carmel-goren, D. Zamir, and J. Hirschberg, An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato, Proceedings of the National Academy of Sciences, vol.97, issue.20, pp.11102-11109, 2000.
DOI : 10.1073/pnas.190177497

C. Rosati, R. Aquilani, S. Dharmapuri, P. Pallara, C. Marusic et al., Metabolic engineering of beta-carotene and lycopene content in tomato fruit, The Plant Journal, vol.318, issue.3, pp.413-422, 2000.
DOI : 10.1126/science.287.5451.303

C. Ma, B. Ma, J. He, Q. Hao, X. Lu et al., Regulation of Carotenoid Content in Tomato by Silencing of Lycopene ??/??-Cyclase Genes, Plant Molecular Biology Reporter, vol.28, issue.1, pp.117-141, 2011.
DOI : 10.1007/s11105-010-0211-3

Y. Oono, C. Ooura, A. Rahman, E. Aspuria, K. Hayashi et al., p-Chlorophenoxyisobutyric Acid Impairs Auxin Response in Arabidopsis Root, PLANT PHYSIOLOGY, vol.133, issue.3, pp.1135-1182, 2003.
DOI : 10.1104/pp.103.027847

S. Liotenberg, H. North, and A. Marion-poll, Molecular biology and regulation of abscisic acid biosynthesis in plants, Plant Physiology and Biochemistry, vol.37, issue.5, pp.341-50, 1999.
DOI : 10.1016/S0981-9428(99)80040-0

I. Taylor, A. Burbidge, and A. Thompson, Control of abscisic acid synthesis, Journal of Experimental Botany, vol.51, issue.350, pp.1563-74, 2000.
DOI : 10.1093/jexbot/51.350.1563

M. Zhang, B. Yuan, and P. Leng, The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit, Journal of Experimental Botany, vol.60, issue.6, pp.1579-88, 2009.
DOI : 10.1093/jxb/erp026

N. Galpaz, Q. Wang, N. Menda, D. Zamir, and J. Hirschberg, Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content, The Plant Journal, vol.71, issue.5, pp.717-747, 2008.
DOI : 10.1007/s001220050664

M. Saltveit, Effect of ethylene on quality of fresh fruits and vegetables, Postharvest Biology and Technology, vol.15, issue.3, pp.279-92, 1999.
DOI : 10.1016/S0925-5214(98)00091-X

C. Frenkel and S. Garrison, Initiation of lycopene synthesis in the tomato mutant rin as influenced by oxygen and ethylene interactions, HortSci, vol.11, pp.20-21, 1976.

D. Jacob-wilk, D. Holland, E. Goldschmidt, J. Riov, and Y. Eyal, Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development, The Plant Journal, vol.463, issue.6, pp.653-61, 1999.
DOI : 10.1016/0014-5793(91)80069-F

S. Harpaz-saad, T. Azoulay, T. Arazi, E. Ben-yaakov, A. Mett et al., Chlorophyllase Is a Rate-Limiting Enzyme in Chlorophyll Catabolism and Is Posttranslationally Regulated, THE PLANT CELL ONLINE, vol.19, issue.3, pp.1007-1029, 2007.
DOI : 10.1105/tpc.107.050633

G. Diretto, S. Babili, R. Tavazza, F. Scossa, V. Papacchioli et al., Transcriptional-Metabolic Networks in ??-Carotene-Enriched Potato Tubers: The Long and Winding Road to the Golden Phenotype, PLANT PHYSIOLOGY, vol.154, issue.2, pp.899-912, 2010.
DOI : 10.1104/pp.110.159368

M. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys et al., Integration of biological networks and gene expression data using Cytoscape, Nature Protocols, vol.31, issue.10, pp.2366-82, 2007.
DOI : 10.1038/nprot.2007.324

H. Neuman, N. Galpaz, C. Jr, F. Zamir, D. Hirschberg et al., reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis, The Plant Journal, vol.3, issue.202, pp.80-93, 2014.
DOI : 10.1111/tpj.12451

J. Pirrello, F. Jaimes-miranda, M. Sanchez-ballesta, B. Tournier, Q. Khalil-ahmad et al., Sl-ERF2, a Tomato Ethylene Response Factor Involved in Ethylene Response and Seed Germination, Plant and Cell Physiology, vol.47, issue.9, pp.1195-205, 2006.
DOI : 10.1093/pcp/pcj084

D. Orzaez, S. Mirabel, W. Wieland, and A. Granell, Agroinjection of Tomato Fruits. A Tool for Rapid Functional Analysis of Transgenes Directly in Fruit, PLANT PHYSIOLOGY, vol.140, issue.1, pp.3-11, 2006.
DOI : 10.1104/pp.105.068221

M. Liu, G. Diretto, J. Pirrello, J. Roustan, Z. Li et al., , shows contrasting effects on tomato fruit ripening, New Phytologist, vol.195, issue.Suppl, pp.206-224, 2014.
DOI : 10.1111/nph.12771

S. Forcat, M. Bennett, J. Mansfield, and M. Grant, A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress., Plant Methods, vol.4, issue.1, p.16, 2008.
DOI : 10.1186/1746-4811-4-16

V. Jaulneau, C. Lafitte, C. Jacquet, S. Fournier, S. Salamagne et al., Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway, Journal of Biomedicine and Biotechnology, vol.66, issue.6, p.525291, 2010.
DOI : 10.1590/S1982-56762008000200009

C. Chervin and L. Deluc, Ethylene signalling receptors and transcription factors over the grape berry development: gene expression profiling, Vitis, vol.49, pp.129-165, 2010.

J. Vaillé and . La, Statistique au service des Données: quelques macros Excel pour faire de l'analyse exploratoire des données. 2010, Modulad n°43

P. Bramley, Regulation of carotenoid formation during tomato fruit ripening and development, Journal of Experimental Botany, vol.53, issue.377, pp.2107-2120, 2002.
DOI : 10.1093/jxb/erf059