P. B. Eckburg, E. M. Bik, C. N. Bernstein, E. Purdom, and L. Dethlefsen, Diversity of the human intestinal microbial flora, Science, vol.308, pp.1635-1638, 2005.

M. Wang, S. Ahrné, B. Jeppsson, and G. Molin, Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes, FEMS Microbiol Ecol, vol.54, pp.219-231, 2005.

C. C. Booijink, E. G. Zoetendal, M. Kleerebezem, and W. M. De-vos, Microbial communities in the human small intestine: coupling diversity to metagenomics, Future Microbiol, vol.2, pp.285-295, 2007.

. Rajilic´-rajilic´-stojanovic´mstojanovic´stojanovic´m, H. Smidt, and W. M. De-vos, Diversity of the human gastrointestinal tract microbiota revisited, Environ Microbiol, vol.9, pp.2125-2136, 2007.

J. Qin, R. Li, J. Raes, M. Arumugam, and K. S. Burgdorf, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

M. Kleerebezem, Metagenomic approaches to unravel the composition and function of the human small intestine microbiota, Intestinal microbiomics: novel indicators of health and disease. Old Herborn University, pp.27-42, 2010.

E. G. Zoetendal, J. Raes, B. Van-den-bogert, M. Arumugam, and C. Booijink, The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates, ISME J, vol.6, pp.1415-1426, 2012.

P. Lepage, M. C. Leclerc, M. Joossens, S. Mondot, and H. M. Blottière, A metagenomic insight into our gut's microbiome, Gut, vol.62, pp.146-158, 2013.

N. Ottman, H. Smidt, W. M. Devos, and C. Belzer, The function of our microbiota: who is out there and what do they do?, Front Cell Infect Microbiol, vol.2, 2012.

S. R. Gill, M. Pop, R. T. Deboy, P. B. Eckburg, and P. J. Turnbaugh, Metagenomic analysis of the human distal gut microbiome, Science, vol.312, pp.1355-1359, 2006.

H. J. Flint, E. A. Bayer, M. T. Rincon, R. Lamed, and B. A. White, Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis, Nat Rev Microbiol, vol.6, pp.121-131, 2008.
DOI : 10.1038/nrmicro1817

J. H. Cummings and G. T. Macfarlane, The control and consequences of bacterial fermentation in the human colon, J Appl Bacteriol, vol.70, pp.443-459, 1991.

H. A. Grabitske and J. L. Slavin, Low-digestible carbohydrates in practice, J Am Diet Assoc, vol.108, pp.1677-1681, 2008.
DOI : 10.1016/j.jada.2008.07.010

M. Roberfroid, Prebiotics: the concept revisited, J Nutr, vol.137, pp.830-837, 2007.
DOI : 10.1093/jn/137.3.830s

URL : https://academic.oup.com/jn/article-pdf/137/3/830S/23505021/830s.pdf

I. Figueroa-gonzález, A. Cruz-guerrero, and G. Quijano, The benefits of probiotics on human health, J Microbial Biochem Technol, vol.1, p.3, 2011.

A. R. Bird, M. A. Conlon, C. T. Christophersen, and D. L. Topping, Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics, Benef Microbes, vol.1, pp.423-431, 2010.

J. Jaskari, P. Kontula, A. Siitonen, H. Jousimies-somer, and T. Mattila-sandholm, Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains, Appl Microbiol Biotechnol, vol.49, pp.175-181, 1998.
DOI : 10.1007/s002530051155

Z. Djouzi, C. Andrieux, V. Pelenc, S. Somarriba, and F. Popot, Degradation and fermentation of alpha-gluco-oligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats, J Appl Bacteriol, vol.79, pp.117-127, 1995.

S. R. Sarbini, S. Kolida, T. Naeye, A. Einerhand, and Y. Brison, In vitro fermentation of linear and alpha-1,2-branched dextrans by the human fecal microbiota, Appl Environ Microbiol, vol.77, pp.5307-5315, 2011.

T. M. Herfel, S. K. Jacobi, X. Lin, V. Fellner, and D. C. Walker, Polydextrose enrichment of infant formula demonstrates prebiotic characteristics by altering intestinal microbiota, organic acid concentrations, and cytokine expression in suckling piglets, J Nutr, vol.141, pp.2139-2145, 2011.

T. Ohkusa, Y. Ozaki, C. Sato, K. Mikuni, and H. Ikeda, Long-term ingestion of lactosucrose increases Bifidobacterium sp. in human fecal flora, Digestion, vol.56, pp.415-420, 1995.
DOI : 10.1159/000201269

B. Gullón, P. Gullón, Y. Sanz, J. L. Alonso, and J. C. Parajó, Prebiotic potential of a refined product containing pectic oligosaccharides, LWT-Food Sci Technol, vol.44, pp.1687-1696, 2011.

M. J. Hopkins, J. H. Cummings, and G. T. Macfarlane, Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources, J Appl Bacteriol, vol.85, pp.381-386, 1998.

R. Licht, T. Ebersbach, T. Frøkiaer, and H. , Prebiotics for prevention of gut infections, Trends in Food Science & Technology, vol.23, pp.70-82, 2012.
DOI : 10.1016/j.tifs.2011.08.011

S. Macfarlane, G. T. Macfarlane, and J. H. Cummings, Review article: prebiotics in the gastrointestinal tract, Aliment Pharmacol Ther, vol.24, pp.701-714, 2006.

T. Goulas, A. Goulas, G. Tzortzis, and G. R. Gibson, Expression of four bgalactosidases from Bifidobacterium bifidum NCIMB41171 and their contribution on the hydrolysis and synthesis of galactooligosaccharides, Appl Microbiol Biotechnol, vol.84, issue.5, pp.899-907, 2009.

C. E. Rycroft, M. R. Jones, G. R. Gibson, and R. A. Rastall, A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides, J Appl Microbiol, vol.91, pp.878-887, 2001.

R. Van-der-meulen, L. Makras, K. Verbrugghe, T. Adriany, D. Vuyst et al., In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms, Appl Environ Microbiol, vol.72, pp.1006-1012, 2006.

C. Ramirez-farias, K. Slezak, Z. Fuller, A. Duncan, and G. Holtrop, Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, Brit J Nutr, vol.101, pp.541-550, 2009.

B. Kleessen, L. Hartmann, and M. Blaut, Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora, Brit J Nutr, vol.86, pp.291-300, 2001.

S. J. Langlands, M. J. Hopkins, N. Coleman, and J. H. Cummings, Prebiotic carbohydrates modify the mucosa-associated microflora of the human large bowel, Gut, vol.53, pp.1610-1616, 2004.

S. H. Duncan, G. L. Hold, H. Harmsen, C. S. Stewart, and H. J. Flint, Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov, Int J Syst Evol Microbiol, vol.52, pp.2141-2146, 2002.

M. A. Schell, M. Karmirantzou, B. Snel, D. Vilanova, and B. Berger, The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract, PNAS, vol.99, pp.14422-14427, 2002.

R. Barrangou, E. Altermann, R. Hutkins, R. Cano, and R. T. Klaenhammer, Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus, PNAS, vol.100, pp.8957-8962, 2003.

J. Y. Goh, C. Zhang, K. A. Benson, V. Schlegel, and J. H. Lee, Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei, Appl Environ Microbiol, vol.72, pp.7518-7530, 2006.

M. S. Ryan, F. G. Fitzgerald, and D. Van-sinderen, Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003, Appl Environ Microbiol, vol.71, pp.3475-3482, 2005.

K. P. Scott, J. C. Martina, C. Chassarda, M. Clergeta, and J. Potrykusa, Substrate-driven gene expression in Roseburia inulinivorans: Importance of inducible enzymes in the utilization of inulin and starch, PNAS, vol.108, pp.4672-4679, 2011.

A. Majumder, A. Sultan, R. R. Jersie-christensen, M. Ejby, and B. G. Schmidt, Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol, Proteomics, vol.11, pp.3470-3481, 2011.

L. Imamura, K. Hisamitsu, and K. Kobashi, Purification and characterization of beta-fructofuranosidase from Bifidobacterium infantis, Biol Pharm Bull, vol.17, pp.596-602, 1994.

K. Van-laere, R. Hartemink, G. Beldman, S. Pitson, and C. Dijkema, Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 a-galactosidase, Appl Microbiol Biotechnol, vol.52, pp.681-688, 1999.

E. D. Sonnenburg, H. Zheng, P. Joglekar, S. K. Higginbottom, and S. J. Firbank, Secificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations, Cell, vol.141, pp.1241-1252, 2010.

S. Lagaert, A. Pollet, J. A. Delcour, R. Lavigne, and C. M. Courtin, Characterization of two b-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides, Appl Microbiol Biotechnol, vol.92, pp.1179-1185, 2011.

T. Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, and M. G. Dominguez-bello, Human gut microbiome viewed across age and geography, Nature, vol.486, pp.222-228, 2012.

L. Tasse, J. Bercovici, S. Pizzut-serin, P. Robe, and J. Tap, Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes, Genome Res, vol.20, pp.1605-1612, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204274

M. Aider and D. De-halleux, Isomerization of lactose and lactulose production: review, Trends Food Sci Tech, vol.18, pp.356-364, 2007.

C. Kunz, S. Rudloff, W. Baier, N. Klein, and S. Strobel, Oligosaccharides in human milk: structural, functional, and metabolic aspects, Annu Rev Nutr, vol.20, pp.699-722, 2000.

T. Urashima, T. Saito, T. Nakamura, and M. Messer, Oligosaccharides of milk and colostrum in non-human mammals, Glycoconjugate J, vol.18, pp.357-371, 2001.

K. Kurokawa, T. Itoh, T. Kuwahara, K. Oshima, and H. Toh, Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes, DNA Res, vol.14, pp.169-181, 2007.

P. J. Turnbaugh and J. I. Gordon, The core gut microbiome, energy balance and obesity, J Physiol, vol.587, pp.4153-4158, 2009.

B. Kullin, V. R. Abratt, and S. J. Reid, A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization, Appl Microbiol Biotechnol, vol.72, pp.975-981, 2006.

A. Bujacz, M. Jedrzejczak-krzepkowska, S. Bielecki, I. Redzynia, and G. Bujacz, Crystal structures of the apo form of b-fructofuranosidase from Bifidobacterium longum and its complex with fructose, FEBS J, vol.278, pp.1728-1744, 2011.

M. Jedrzejczak-krzepkowska, K. L. Tkaczuk, and S. Bielecki, Biosynthesis, purification and characterization of b-fructofuranosidase from Bifidobacterium longum KN29.1, Process Biochem, vol.46, pp.1963-1972, 2011.

S. Lagaert, S. Van-campenhout, A. Pollet, T. M. Bourgois, and J. A. Delcour, Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from Bifidobacterium adolescentis, Appl Environ Microbiol, vol.73, pp.5374-5377, 2007.

S. Lagaert, A. Pollet, J. A. Delcour, R. Lavigne, and C. M. Courtin, Substrate specificity of three recombinant a-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides, Biochem Bioph Res Co, vol.402, pp.644-650, 2010.

R. González, E. S. Klaassens, E. Malinen, W. M. De-vos, and E. E. Vaughan, Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide, Appl Environ Microbiol, vol.74, pp.4686-4694, 2008.

A. Belenguer, S. H. Duncan, A. G. Calder, G. Holtrop, and P. Louis, Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrateproducing anaerobes from the human gut, Appl Environ Microbiol, vol.72, pp.3593-3599, 2006.

M. Rossi, C. Corradini, A. Amaretti, M. Nicolini, and A. Pompei, Fermentation of fructooligosaccharides and inulin by Bifidobacteria: A comparative study of pure and fecal cultures, Appl Environ Microbiol, vol.71, pp.6150-6158, 2005.

M. P. Conte, S. Schippa, I. Zamboni, M. Penta, and F. Chiarini, Gutassociated bacterial microbiota in paediatric patients with inflammatory bowel disease, Gut, vol.55, pp.1760-1767, 2006.

R. Iyer, S. K. Tomar, T. U. Maheswari, and R. Singh, Streptococcus thermophilus strains: Multifunctional lactic acid bacteria, Int Dairy J, vol.20, pp.133-141, 2010.

M. Rhimi, A. Boisson, M. Dejob, S. Boudebouze, and E. Maguin, Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain, Res Microbiol, vol.161, pp.515-525, 2010.

S. P. Stabler, B12 and nutrition. In: Barnejee R editor. Chemistry and biochemistry of B12, pp.343-365, 1999.

R. Barnerjee, B12 trafficking in mammals: A for coenzyme escort service, ACS Chem Biol, vol.1, pp.149-159, 2006.

F. Santos, J. L. Vera, R. Van-der-heijden, G. Valdez, and W. M. De-vos, The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098, Microbiology, vol.154, pp.81-93, 2008.

. Van-hylckama, J. E. Vlieg, P. Veiga, C. Zhang, M. Derrien et al., Impact of microbial transformation of food on health-from fermented foods to fermentation in the gastro-intestinal tract, Curr Opin Biotechnol, vol.22, pp.211-219, 2011.

B. Temperton, D. Field, A. Oliver, B. Tiwari, and M. Muhling, Bias in assessments of marine microbial biodiversity in fosmid libraries as evaluated by pyrosequencing, Isme J, vol.3, pp.792-796, 2009.

E. M. Gabor, W. B. Alkema, and D. B. Janssen, Quantifying the accessibility of the metagenome by random expression cloning techniques, Environ Microbiol, vol.6, pp.879-886, 2004.

D. Taras, R. Simmering, M. D. Collins, P. A. Lawson, and M. Blaut, Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces, Int J Syst and Evol Microbiol, vol.52, pp.423-428, 2002.

C. S. Smillie, M. B. Smith, J. Friedman, O. X. Cordero, and L. A. David, Ecology drives a global network of gene exchange connecting the human microbiome, Nature, vol.480, pp.241-244, 2011.

M. Arumugam, J. Raes, E. Pelletier, L. Paslier, D. Yamada et al., Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

J. Peterson, S. Garges, M. Giovanni, P. Mcinnes, and L. Wang, The NIH Human Microbiome Project, Genome Res, vol.19, pp.2317-2323, 2009.

K. Gloux, O. Berteau, E. Oumami, H. Beguet, F. Leclerc et al., A metagenomic b-glucuronidase uncovers a core adaptive function of the human intestinal microbiome, PNAS, vol.108, pp.4539-4546, 2011.

X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome Res, vol.9, pp.868-877, 1999.
DOI : 10.1101/gr.9.9.868

URL : http://genome.cshlp.org/content/9/9/868.full.pdf

H. Noguchi, J. Park, and T. Takagi, MetaGene: prokaryotic gene finding from environmental genome shotgun sequences, Nucleic Acids Res, vol.34, pp.5623-5630, 2006.
DOI : 10.1093/nar/gkl723

URL : https://academic.oup.com/nar/article-pdf/34/19/5623/16761555/gkl723.pdf

D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster, MEGAN analysis of metagenomic data, Genome Res, vol.17, pp.377-386, 2007.
DOI : 10.1101/gr.5969107

URL : http://genome.cshlp.org/content/17/3/377.full.pdf