Congrès du Groupe Français des Pesticides 25-27 mai 2011. Orléans

Approche intégrée de l'étude du comportement des pesticides dans les sols

<u>Véronique Chaplain</u>¹, Laure Mamy¹, Laure Vieublé-Gonod², Christian Mougin¹, Pierre Benoit², Enrique Barriuso¹, Sylvie Nélieu²

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

- Les sols sont à l'interface des compartiments de la biosphère et jouent un rôle décisif dans la dispersion des contaminants dans l'environnement
- Les processus de rétention et de dégradation biologique et abiotique déterminent largement la concentration des pesticides dans la solution du sol
- Les principales difficultés dans la compréhension et la prévision de ces processus sont :
 - Couplages entre processus
 - Diversité des structures chimiques des pesticides
 - > Diversité des sols, hétérogénéité spatiale et variations temporelles
 - Sensibilité aux conditions climatiques
 - Sensibilité aux pratiques agricoles

Objectifs

- Rappeler les facteurs influant la rétention et la dégradation : approche analytique
- Proposer une approche intégrée de l'étude du devenir des pesticides dans les sols

Facteurs influant la rétention des pesticides dans les sols

Propriétés physico-chimiques des pesticides

- Polarité, Caractère acide-base, Balance hydrophobe/hydrophile
 - → Types d'interactions pesticide-sol : liaisons hydrogènes, donneur-accepteur d'e-, interactions hydrophobes, échange d'ions...

Propriétés physico-chimiques des sols

- Composition minérale et organique (nature et teneur)
- > pH, Capacité d'échange cationique
- Structure des sols et son hétérogénéité (densité, porosité)
 - → Diffusion moléculaire versus convection hydrodynamique
- > Répartition spatiale des matières organiques (MO) endo et/ou exogènes

Facteurs influant la rétention des pesticides dans les sols

- Conditions environnementales
 - > Teneur en eau (effets contrastés selon les pesticides)
 - > Température

- Pratiques agricoles
 - Répartition spatiale des MO endo et/ou exogènes Effets de profondeur Grande variabilité avec l'échelle de mesure

Facteurs influant la dégradation biologique des pesticides

- Pas de relation explicite entre les propriétés physico-chimiques des pesticides et leur biodégradation
 - ➤ Néanmoins, la présence d'atomes halogènes tend à diminuer la dégradation biologique (Lindane, Chlordécone)
- Propriétés physico-chimiques des sols
 - > composition, COT, pH
 - Répartition de l'eau, diffusion du pesticide et de l'oxygène
- Pratiques agricoles
 - Structure du sol
 - > Apport de MO (couverts végétaux, composts)

Facteurs influant la dégradation abiotique des pesticides

Hydrolyse

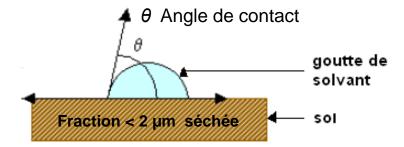
- > Teneur en eau, pH
- Fonctions acides (argile, matières organiques)
- \rightarrow Rétention \rightarrow \triangle (caractère électrophile du pesticide) \rightarrow \triangle (réactivité)

Réactions d'oxydo-réduction

- Oxydation favorisée par : des catalyseurs biologiques (ex. enzymes oxydantes) des oxydes métalliques (ex. MnO₂ et MnOOH) ... et l'oxygène
- Réduction : effective en conditions anoxiques
 Favorisée par les métaux réduits, les sulfures, la MO (ex. fⁿ quinone)

Facteurs influant la dégradation abiotique des pesticides

• Photodégradation : rapide, mais limitée à la surface des sols (profondeur ≤ 2 mm): pénétration lumineuse = f(couvert végétal, texture, structure, humidité)


- \triangleright **Directe**: ε(λ) et Φ(λ) ≠ sous formes adsorbée et dissoute
 - → Influence du sol variable (mal connue)
- ➤ Indirecte : (= formation d'espèces réactives à partir des constituants des sols, qui réagissent avec le pesticide)
 - → Influence de : (hydr)oxydes de fer, argiles, MO, et surtout eau

Echelle macromoléculaire

- La compétition entre les interactions polaires et apolaires (intra et inter chaînes) structure les MO en micro-domaines hydrophobes et phases condensées
- Cette structuration est sensible à l'environnement physico-chimique (FI, pH, Al³+, cycle d'humectation/dessication...)
- Pas de corrélation entre la rétention des pesticides et la nature chimique des MO (carbones aromatique et aliphatique...)
- Prendre en compte la nature macromoléculaire, poly-électrolytes et polyamphiphiles, de la MO
- Elle confère aux MO leur réactivité vis-à-vis des pesticides peu polaires ou apolaires en impliquant généralement des processus multiples

Echelle du complexe argilo-humique

- Fraction granulométrique < 2 µm, fraction organo-minérale de grande surface spécifique
 - → Charges de surfaces : mesure par titration et mobilité électrophorétique
 - **→ Mouillabilité :** mesure de l'angle de contact

La rétention du diuron sur le goutte de sol est reliée à la mouillabilité de la fraction argileuse dans une large gamme de pH *

➤ En comparant l'étalement de différents solvants aqueux et organiques, la mouillabilité renseigne sur la capacité de la fraction à développer des interactions acide-base de Lewis, des interactions de type van der Waals et des interactions hydrophobes

^{*} Chaplain et al., 2008, EJSS; ** Van Oss, 1976

Echelle des agrégats du sol

- Variabilité spatiale des propriétés de surface
 - > Hydrophobie marquée à la périphérie de agrégats
 - > Hétérogénéité dans la rétention des pesticides et dans la colonisation des milieux
- · Structure hétérogène de la microporosité
 - Cinétique d'adsorption (prépondérance de la diffusion moléculaire dans la MO)
 - ➤ Minéralisation hétérogène (Exemple du 2,4-D) : Rôle de la taille des agrégats

Echelle mésoscopique :

- Échelle intermédiaire entre forte variabilité de la microporosité et forte variabilité de la macroporosité
- Les paramètres intégrateurs caractéristiques des sols sont la densité et l'état hydrique
- et l'hétérogénéité de la structure par comparaison du devenir de pesticides dans des échantillons de sol remaniés / intacts pour un état hydrique comparable (à saturation ou à potentiel matriciel fixé)
- échelle adaptée à l'étude des couplages rétention/dégradation et devenir/ impact (activité enzymatique)

Echantillons minces ~ 25 cm³

La répartition et la biodégradation sont globalement homogène.

- Cinétique à long terme liée à des temps de diffusion très longs
- ➤ Effet hydrique : rétention pesticides polaires ↗ quand la teneur en eau ↗ par augmentation de la surface d'échange et du caractère hydrophile des surfaces

Echantillons épais ~ 100 cm³

La biodégradation est homogène mais incertitude sur la répartition du pesticide et sur l'impact écotoxicologique

- ➤ Échelle adaptée pour la prévision de l'effet des pratiques agricoles sur la densité des sols Si à potentiel matriciel fixé, la stabilité mécanique ↗ quand la densité ↗, alors le non-labour entraîne une diminution de la densité
- La variabilité des propriétés mécaniques est un indicateur de variabilité structurale des sols

• La mise en oeuvre de l'approche proposée implique le choix de molécules de référence sur la base de critères physico-chimiques :

Charge : phénylurées (diuron, isoproturon)

Molécules neutres sur toute la gamme de pH rencontrée dans les sols

→ La rétention de ces molécules modèles peut devenir un indicateur de l'hydrophobie des sols

> Taille : co-solubilisation de molécules apolaires

Pyrène, lindane, chlordécone :

Volumes : $240 - 257 - 385 \, \text{Å}^3$

Rayons: 2,67 – 2,73 – 3,13 Å

→ à comparer avec la taille des microdomaines hydrophobes

Couplage étention/dégradation

• L'hétérogénéité de la structure des sols et de leurs propriétés interfaciales est décrite par un ensemble de paramètres intégrateurs à différentes échelles :

- ➤ Macro-moléculaire : Taille des micro-domaines hydrophobes des MO
- ➤ Complexe argilo-humique : Mouillabilité de la fraction argileuse
- > Agrégat : Hydrophobie, densité, taille
- > Mésoscopique : Densité apparente, état hydrique
- > Parcelle ; répartition spatiale des MO exogènes, leur dynamique
- Dans le cadre du plan Ecophyto, les leviers d'action sont le choix des molécules et l'amélioration des pratiques agricoles
 - ➤ L'échelle mésoscopique assure un lien entre ces deux échelles pour l'étude des processus qui régissent le devenir et l'impact des pesticides dans les sols.

Merci de votre attention

Une description détaillée de cette approche sera publiée en libre accès à l'adresse suivante :

http://www.intechopen.com

In Pesticides in the modern word / Book 3, 2011