P. Achard, W. H. Vriezen, D. Van-der-straeten, and N. P. Harberd, Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function, The Plant Cell, vol.15, pp.2816-2825, 2003.

T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev et al., NCBI GEO: mining tens of millions of expression profiles-database and tools update, Nucleic Acids Research, vol.35, pp.760-765, 2007.

G. Beemster and T. I. Baskin, STUNTED PLANT 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of arabidopsis, Plant Physiology, vol.124, pp.1718-1727, 2000.

E. Benkova and J. Hejatko, Hormone interactions at the root apical meristem, Plant Molecular Biology, vol.69, pp.383-396, 2009.

Y. M. Bi, R. L. Wang, T. Zhu, and S. J. Rothstein, Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis, BMC Genomics, vol.8, p.281, 2007.

V. Bourion, G. Laguerre, G. Depret, A. S. Voisin, C. Salon et al., Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea, Annals of Botany, vol.100, pp.589-598, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02660944

V. Bourion, S. Rizvi, S. Fournier, H. De-larambergue, F. Galmiche et al., Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability, Theoretical and Applied Genetics, vol.121, pp.71-86, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02662677

L. J. Bright, Y. Liang, D. M. Mitchell, and J. M. Harris, The LATD gene of Medicago truncatula is required for both nodule and root development, Molecular Plant-Microbe Interactions, vol.18, pp.521-532, 2005.

F. Brun, C. Richard-molard, L. Pages, M. Chelle, and B. Ney, To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach, Journal of Experimental Botany, vol.61, pp.2157-2169, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01192140

F. De-billy, C. Grosjean, S. May, M. Bennett, and J. V. Cullimore, Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development, Molecular Plant-Microbe Interactions, vol.14, pp.267-277, 2001.

C. M. Fraser and C. Chapple, The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book, vol.9, pp.152-0152, 2011.

F. Frugier, S. Kosuta, J. D. Murray, M. Crespi, and K. Szczyglowski, Cytokinin: secret agent of symbiosis, Trends in Plant Science, vol.13, pp.115-120, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00856256

X. D. Fu and N. P. Harberd, Auxin promotes Arabidopsis root growth by modulating gibberellin response, Nature, vol.421, pp.740-743, 2003.

R. S. Fukushima and R. D. Hatfield, Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method, Journal of Agricultural and Food Chemistry, vol.49, pp.3133-3139, 2001.

S. Gagnot, J. P. Tamby, M. L. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, pp.986-990, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203869

Y. C. Ge, S. Dudoit, and T. P. Speed, Resampling-based multiple testing for microarray data analysis, Test, vol.12, pp.1-77, 2003.

R. Gentleman and V. Carey, Bioconductor. R News, vol.2, pp.11-16, 2002.

M. L. Gifford, A. Dean, R. A. Gutierrez, G. M. Coruzzi, and K. D. Birnbaum, Cell-specific nitrogen responses mediate developmental plasticity, Proceedings of the National Academy of Sciences, USA 105, pp.803-808, 2008.

T. Girin, E. S. El-kafafi, T. Widiez, A. Erban, H. M. Hubberten et al., Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant, Plant Physiology, vol.153, pp.1250-1260, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00507517

A. Gojon, G. Krouk, F. Perrine-walker, and E. Laugier, Nitrate transceptor(s) in plants, Journal of Experimental Botany, vol.62, pp.2299-2308, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00589335

S. Gonzalez-rizzo, M. Crespi, and F. Frugier, The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti, The Plant Cell, vol.18, pp.2680-2693, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123705

S. Ikram, M. Bedu, F. Daniel-vedele, S. Chaillou, and F. Chardon, Natural variation of Arabidopsis response to nitrogen availability, Journal of Experimental Botany, vol.63, pp.91-105, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004266

R. A. Irizarry, B. Hobbs, C. F. Beazer-barclay, Y. D. Antonellis, K. J. Scherf et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, pp.249-264, 2003.

A. Ivanov, A. Kameka, A. Pajak, L. Bruneau, R. Beyaert et al., Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine, Amino Acids, vol.42, pp.2307-2318, 2012.

J. Jin, M. Watt, and U. Mathesius, The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport, Plant Physiology, vol.159, pp.489-500, 2012.

T. Kiba, T. Kudo, M. Kojima, and H. Sakakibara, Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin, Journal of Experimental Botany, vol.62, pp.1399-1409, 2011.

J. M. Kraft and W. Boge, Root characteristics in pea in relation to compaction and fusarium root rot, Plant Disease, vol.85, pp.936-940, 2001.

G. Krouk, B. Lacombe, and A. Bielach, Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants, Developmental Cell, vol.18, pp.927-937, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508268

L. Krusell, L. H. Madsen, and S. Sato, Shoot control of root development and nodulation is mediated by a receptor-like kinase, Nature, vol.420, pp.422-426, 2002.

C. Laffont, S. Blanchet, C. Lapierre, L. Brocard, P. Ratet et al., The Compact Root Architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula, at INRA Avignon on November, vol.153, pp.1597-1607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856223

L. Laplaze, E. Benkova, and I. Casimiro, Cytokinins act directly on lateral root founder cells to inhibit root initiation, The Plant Cell, vol.19, pp.3889-3900, 2007.

A. Larigauderie, J. F. Reynolds, and B. R. Strain, Root response to CO 2 enrichment and nitrogen supply in loblolly-pine, Plant and Soil, vol.165, pp.21-32, 1994.

L. Lejay, P. Tillard, M. Lepetit, F. D. Olive, S. Filleur et al., Molecular and functional regulation of two NO 3 -uptake systems by N-and C-status of Arabidopsis plants, The Plant Journal, vol.18, pp.509-519, 1999.

Y. Liang, D. M. Mitchell, and J. M. Harris, Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant, Developmental Biology, vol.304, pp.297-307, 2007.

D. Loque, L. Yuan, S. Kojima, A. Gojon, J. Wirth et al., Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots, The Plant Journal, vol.48, pp.522-534, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667065

O. Loudet, S. Chaillou, A. Krapp, and F. Daniel-vedele, Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana, Genetics, vol.163, pp.711-722, 2003.

J. E. Malamy, Intrinsic and environmental response pathways that regulate root system architecture, Plant, Cell and Environment, vol.28, pp.67-77, 2005.

J. E. Malamy and K. S. Ryan, Environmental regulation of lateral root initiation in Arabidopsis, Plant Physiology, vol.127, pp.899-909, 2001.

A. Marchant, R. Bhalerao, I. Casimiro, J. Eklof, P. J. Casero et al., AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling, The Plant Cell, vol.14, pp.589-597, 2002.

K. Mcphee, Variation for seedling root architecture in the core collection of pea germplasm, Crop Science, vol.45, pp.1758-1763, 2005.

D. Moreau, J. Burstin, A. G. Huguet, T. Ben, C. Prosperi et al., Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula, Theoretical and Applied Genetics, vol.124, pp.755-768, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267800

D. Moreau, A. S. Voisin, C. Salon, and N. Munier-jolain, The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N 2 fixation is the main N source for plant growth, Journal of Experimental Botany, vol.59, pp.3509-3522, 2008.

G. K. Muday and A. Delong, Polar auxin transport: controlling where and how much, Trends in Plant Science, vol.6, pp.535-542, 2001.

S. Naseer, Y. Lee, C. Lapierre, R. Franke, C. Nawrath et al., Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin, Proceedings of the National Academy of Sciences, vol.109, pp.10101-10106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004175

S. Okamoto, E. Ohnishi, S. Sato, H. Takahashi, M. Nakazono et al., Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation, Plant and Cell Physiology, vol.50, pp.67-77, 2009.

S. Omrane, A. Ferrarini, D. 'apuzzo, E. Rogato, A. Delledonne et al., Symbiotic competence in Lotus japonicus is affected by plant nitrogen status: transcriptomic identification of genes affected by a new signalling pathway, New Phytologist, vol.183, pp.380-394, 2009.

W. A. Peer, A. Bandyopadhyay, J. J. Blakeslee, S. I. Makam, R. J. Chen et al., Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana, The Plant Cell, vol.16, pp.1898-1911, 2004.

W. A. Peer and A. S. Murphy, Flavonoids and auxin transport: modulators or regulators?, Trends in Plant Science, vol.12, pp.556-563, 2007.

B. Peret, B. De-rybel, I. Casimiro, E. Benkova, R. Swarup et al., Arabidopsis lateral root development: an emerging story, Trends in Plant Science, vol.14, pp.399-408, 2009.
URL : https://hal.archives-ouvertes.fr/cea-00848579

J. Plet, A. Wasson, A. F. , L. Signor, C. Baker et al., MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula, The Plant Journal, vol.65, pp.622-633, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00856206

T. Remans, P. Nacry, M. Pervent, S. Filleur, E. Diatloff et al., The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches, Proceedings of the National Academy of Sciences, USA 103, pp.19206-19211, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124948

T. Remans, P. Nacry, M. Pervent, T. Girin, P. Tillard et al., A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis, Plant Physiology, vol.140, pp.909-921, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00087065

T. Rey, A. Nars, and M. Bonhomme, NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens, New Phytologist, vol.198, pp.875-886, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646356

S. Ruffel, S. Freixes, and S. Balzergue, Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula, Plant Physiology, vol.146, pp.2020-2035, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275798

S. Ruffel, G. Krouk, D. Ristova, D. Shasha, K. D. Birnbaum et al., Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand, Proceedings of the National Academy of Sciences, vol.108, pp.18524-18529, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00662610

K. Ruzicka, M. Simaskova, J. Duclercq, J. Petrasek, E. Zazimalova et al., Cytokinin regulates root meristem activity via modulation of the polar auxin transport, Proceedings of the National Academy of Sciences, vol.106, pp.4284-4289, 2009.

M. Sagan, D. Morandi, E. Tarenghi, and G. Duc, Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn) after gamma-ray mutagenesis, Plant Science, vol.111, pp.63-71, 1995.

C. Salon, M. Lepetit, P. Gamas, C. Jeudy, S. Moreau et al., Analysis and modeling of the integrative response of Medicago truncatula to nitrogen constraints, Comptes Rendus Biologies, vol.332, pp.1022-1033, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448689

C. Salon, N. G. Munier-jolain, G. Duc, A. S. Voisin, D. Grandgirard et al., Grain legume seed filling in relation to nitrogen acquisition: A review and prospects with particular reference to pea, Agronomie, vol.21, pp.539-552, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00886153

W. R. Scheible, R. Morcuende, T. Czechowski, C. Fritz, D. Osuna et al., Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen, Plant Physiology, vol.136, pp.2483-2499, 2004.

E. Schnabel, E. P. Journet, F. De-carvalho-niebel, G. Duc, and J. Frugoli, The Medicago truncatula SUNN gene encodes a CLV1-like leucinerich repeat receptor kinase that regulates nodule number and root length, Plant Molecular Biology, vol.58, pp.809-822, 2005.

E. L. Schnabel, T. K. Kassaw, L. S. Smith, J. F. Marsh, G. E. Oldroyd et al., The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family, Plant Physiology, vol.157, pp.328-340, 2011.

G. J. Seifert and K. Roberts, The biology of arabinogalactan proteins, Annual Review of Plant Biology, vol.58, pp.137-161, 2007.

H. Z. Shi, Y. Kim, Y. Guo, B. Stevenson, and J. K. Zhu, The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion, The Plant Cell, vol.15, pp.19-32, 2003.

E. Steudle and C. A. Peterson, How does water get through roots, Journal of Experimental Botany, vol.49, pp.775-788, 1998.

V. Tellstrom, B. Usadel, O. Thimm, M. Stitt, H. Kuster et al., The lipopolysaccharide of Sinorhizobium meliloti suppresses defenseassociated gene expression in cell cultures of the host plant Medicago truncatula, Plant Physiology, vol.143, pp.825-837, 2007.

O. Thimm, O. Blasing, Y. Gibon, A. Nagel, S. Meyer et al., MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes, The Plant Journal, vol.37, pp.914-939, 2004.

S. Ubeda-tomas, R. Swarup, J. Coates, K. Swarup, L. Laplaze et al., Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis, Nature Cell Biology, vol.10, pp.625-628, 2008.

A. J. Van-hengel and K. Roberts, Fucosylated arabinogalactan proteins are required for full root cell elongation in arabidopsis, at INRA Avignon on November, vol.32, pp.105-113, 2002.

P. Liu, I. I. Ivanov, S. Filleur, Y. B. Gan, T. Remans et al., Nitrogen regulation of root branching, Annals of Botany, vol.97, pp.875-881, 2006.

P. Walch-liu, L. H. Liu, T. Remans, M. Tester, and B. G. Forde, Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana, Plant and Cell Physiology, vol.47, pp.1045-1057, 2006.

R. C. Wang, M. Okamoto, X. J. Xing, and N. M. Crawford, Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism, Plant Physiology, vol.132, pp.556-567, 2003.

J. Wopereis, E. Pajuelo, F. B. Dazzo, Q. Y. Jiang, P. M. Gresshoff et al., Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype, The Plant Journal, vol.23, pp.97-114, 2000.

G. Wu, D. R. Lewis, and E. P. Spalding, Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development, The Plant Cell, vol.19, pp.1826-1837, 2007.

C. R. Yendrek, Y. C. Lee, and V. Morris, A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula, The Plant Journal, vol.62, pp.100-112, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02662325

L. X. Yuan, D. Loque, F. H. Ye, W. B. Frommer, and N. Von-wiren, Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1, Plant Physiology, vol.1, pp.732-744, 2007.

H. M. Zhang and B. G. Forde, An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture, Science, vol.279, pp.407-409, 1998.

H. M. Zhang and B. G. Forde, Regulation of Arabidopsis root development by nitrate availability, Journal of Experimental Botany, vol.51, pp.51-59, 2000.

H. M. Zhang, A. Jennings, P. W. Barlow, and B. G. Forde, Dual pathways for regulation of root branching by nitrate, Proceedings of the National Academy of Sciences, USA 96, vol.25, pp.6529-6534, 1999.