O. Filtenborg, J. Frisvad, and U. Thrane, Moulds in food spoilage, International Journal of Food Microbiology, vol.33, issue.1, pp.85-102, 1996.
DOI : 10.1016/0168-1605(96)01153-1

E. Binder, Managing the risk of mycotoxins in modern feed production, Animal Feed Science and Technology, vol.133, issue.1-2, pp.149-66, 2007.
DOI : 10.1016/j.anifeedsci.2006.08.008

C. Wolf-hall, M. Hanna, and L. Bullerman, Stability of Deoxynivalenol in Heat-Treated Foods, Journal of Food Protection, vol.62, issue.8, pp.962-966, 1999.
DOI : 10.4315/0362-028X-62.8.962

R. Canady, R. Coker, S. Rgan, R. Krska, T. Kuiper-goodman et al., In Safety Evaluation of Certain Mycotoxins in Food Fifty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives, International Programme on Chemical Safety: World Health Organization, pp.420-555, 2001.

L. Bao, C. Oles, K. White, C. Sapp, and M. Trucksess, Use of a Multifunctional Column for the Determination of Deoxynivalenol in Grains, Grain Products, and Processed Foods, Journal of AOAC International, vol.94, issue.5, pp.1506-1518, 2011.
DOI : 10.5740/jaoacint.10-477

L. Reinhold and K. Reinhardt, Mycotoxins in foods in Lower Saxony (Germany): results of official control analyses performed in 2009, Mycotoxin Research, vol.47, issue.8, pp.137-180, 2011.
DOI : 10.1007/s12550-011-0086-7

I. Rodrigues and K. Naehrer, A Three-Year Survey on the Worldwide Occurrence of Mycotoxins in Feedstuffs and Feed, Toxins, vol.4, issue.12, pp.663-75, 2012.
DOI : 10.3390/toxins4090663

V. Sirot, J. Fremy, and J. Leblanc, Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, pp.1-11, 2013.

W. Bryden, Mycotoxins in the food chain: human health implications, Asia Pacific journal of clinical nutrition. Epub, vol.1630, issue.1, pp.95-101, 2007.

I. Oswald, D. Marin, S. Bouhet, P. Pinton, I. Taranu et al., Immunotoxicological risk of mycotoxins for domestic animals. Food additives and contaminants, pp.354-60, 2005.

P. Turner, J. Rothwell, K. White, Y. Gong, J. Cade et al., Urinary Deoxynivalenol Is Correlated with Cereal Intake in Individuals from the United Kingdom, Environmental Health Perspectives, vol.116, issue.1, pp.21-26, 2008.
DOI : 10.1289/ehp.10663

J. Pestka and A. Smolinski, Deoxynivalenol: Toxicology and Potential Effects on Humans, Journal of Toxicology and Environmental Health, Part B, vol.57, issue.1, pp.39-69, 2005.
DOI : 10.1093/toxsci/kfg148

B. Flannery, W. Wu, and J. Pestka, Characterization of deoxynivalenol-induced anorexia using mouse bioassay . Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, pp.1863-1872, 2011.

C. Girardet, M. Bonnet, R. Jdir, M. Sadoud, S. Thirion et al., The Food-Contaminant Deoxynivalenol Modifies Eating by Targeting Anorexigenic Neurocircuitry, PLoS ONE, vol.501, issue.3, pp.26134-3192137, 2011.
DOI : 10.1371/journal.pone.0026134.t002

URL : https://hal.archives-ouvertes.fr/hal-01414479

B. Flannery, E. Clark, and J. Pestka, Anorexia Induction by the Trichothecene Deoxynivalenol (Vomitoxin) Is Mediated by the Release of the Gut Satiety Hormone Peptide YY, Toxicological Sciences, vol.130, issue.2, pp.289-97, 2012.
DOI : 10.1093/toxsci/kfs255

A. Jean, Brain stem control of swallowing: neuronal network and cellular mechanisms, Physiological reviews. Epub, vol.8129, issue.2, pp.929-69, 2001.

D. Bieger, Central nervous system control mechanisms of swallowing: A neuropharmacological perspective, Dysphagia, vol.53, issue.4, pp.308-318, 1993.
DOI : 10.1007/BF01321768

J. Kessler, N. Cherkaoui, D. Catalin, and A. Jean, Swallowing responses induced by microinjection of glutamate and glutamate agonists into the nucleus tractus solitarius of ketamine-anesthetized rats, Experimental Brain Research, vol.83, issue.1, pp.151-159, 1990.
DOI : 10.1007/BF00232203

J. Kessler and A. Jean, Evidence that activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors within the nucleus tractus solitarii triggers swallowing, European Journal of Pharmacology, vol.201, issue.1, pp.59-67, 1991.
DOI : 10.1016/0014-2999(91)90323-I

H. Harada, K. Takakusaki, S. Kita, M. Matsuda, S. Nonaka et al., Effects of injecting GABAergic agents into the medullary reticular formation upon swallowing induced by the superior laryngeal nerve stimulation in decerebrate cats, Neuroscience Research, vol.51, issue.4, pp.395-404, 2005.
DOI : 10.1016/j.neures.2004.12.007

Y. Wang and D. Bieger, Role of solitarial GABAergic mechanisms in control of swallowing. The American journal of physiology, Pt Epub, vol.261, issue.2, pp.639-685, 1991.

A. Jean, J. Kessler, and F. Tell, Nucleus tractus solitarii and deglutition: monoamines, excitatory amino acids, and cellular properties, Nucleus of the Solitary Tract, pp.361-75, 1994.

B. Félix, A. Jean, and C. Roman, Leptin inhibits swallowing in rats American journal of physiology Regulatory, integrative and comparative physiology, Epub, vol.291, issue.3, pp.657-63, 2006.

B. Bariohay, C. Tardivel, J. Pio, A. Jean, and B. Félix, BDNF-TrkB signaling interacts with the GABAergic system to inhibit rhythmic swallowing in the rat, AJP: Regulatory, Integrative and Comparative Physiology, vol.295, issue.4, pp.1050-1059, 2008.
DOI : 10.1152/ajpregu.90407.2008

R. Mostafeezur, H. Zakir, H. Takatsuji, Y. Yamada, K. Yamamura et al., Cannabinoids Facilitate the Swallowing Reflex Elicited by the Superior Laryngeal Nerve Stimulation in Rats, PLoS ONE, vol.410, issue.11, pp.50703-3507745, 2012.
DOI : 10.1371/journal.pone.0050703.g007

J. Kessler and A. Jean, Identification of the medullary swallowing regions in the rat, Experimental Brain Research, vol.57, issue.2, pp.256-63, 1985.
DOI : 10.1007/BF00236530

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 1998.

M. Bonnet, J. Roux, L. Mounien, M. Dallaporta, and J. Troadec, Advances in Deoxynivalenol Toxicity Mechanisms: The Brain as a Target, Toxins, vol.4, issue.12, pp.1120-1158, 2012.
DOI : 10.3390/toxins4111120

P. Pinton, D. Tsybulskyy, J. Lucioli, J. Laffitte, P. Callu et al., Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicological sciences: an official journal of the Society of Toxicology, pp.180-90, 2012.

M. Maresca, From the Gut to the Brain: Journey and Pathophysiological Effects of the Food-Associated Trichothecene Mycotoxin Deoxynivalenol, Toxins, vol.5, issue.4, pp.784-820, 2013.
DOI : 10.3390/toxins5040784

D. Prelusky, K. Hartin, H. Trenholm, and J. Miller, Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine*1, Fundamental and Applied Toxicology, vol.10, issue.2, pp.276-86, 1988.
DOI : 10.1016/0272-0590(88)90312-0

J. Pestka, Z. Islam, and C. Amuzie, Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse, Toxicology Letters, vol.178, issue.2, pp.83-90, 2008.
DOI : 10.1016/j.toxlet.2008.02.005

H. Abbas, C. Mirocha, and J. Tuite, Natural occurrence of deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in refusal factor corn stored since 1972 Applied and environmental microbiology, PMID, vol.51, issue.4, pp.841-844, 1986.

H. Trenholm, R. Hamilton, D. Friend, B. Thompson, and K. Hartin, Feeding trials with vomitoxin (deoxynivalenol )-contaminated wheat: effects on swine, poultry, and dairy cattle, Journal of the American Veterinary Medical Association, vol.185, issue.5, pp.527-558, 1984.

M. Kobashi, S. Xuan, M. Fujita, Y. Mitoh, and R. Matsuo, Central ghrelin inhibits reflex swallowing elicited by activation of the superior laryngeal nerve in the rat, Regulatory Peptides, vol.160, issue.1-3, pp.1-319, 2010.
DOI : 10.1016/j.regpep.2009.12.014

M. Kobashi, S. Mizutani, M. Fujita, Y. Mitoh, Y. Shimatani et al., Central orexin inhibits reflex swallowing elicited by the superior laryngeal nerve via caudal brainstem in the rat, Physiology & Behavior, vol.130, pp.6-12, 2014.
DOI : 10.1016/j.physbeh.2014.03.009

J. Kessler and A. Jean, Inhibition of the swallowing reflex by local application of serotonergic agents into the nucleus of the solitary tract, European Journal of Pharmacology, vol.118, issue.1-2, pp.77-85, 1985.
DOI : 10.1016/0014-2999(85)90665-X

D. Lam, A. Garfield, O. Marston, J. Shaw, and L. Heisler, Brain serotonin system in the coordination of food intake and body weight, Pharmacology Biochemistry and Behavior, vol.97, issue.1, pp.84-91, 2010.
DOI : 10.1016/j.pbb.2010.09.003

J. Pestka, Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance Archives of toxicology, pp.663-79, 2010.

W. Wu, M. Bates, S. Bursian, B. Flannery, H. Zhou et al., Peptide YY3-36 and 5-hydroxytryp- tamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin) Toxicological sciences: an official journal of the Society of Toxicology, pp.186-95, 2013.

C. Amuzie, J. Harkema, and J. Pestka, Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: Comparison of nasal vs. oral exposure, Toxicology, vol.248, issue.1, pp.39-44, 2008.
DOI : 10.1016/j.tox.2008.03.005

S. Gaige, A. Abysique, and M. Bouvier, Effects of leptin on cat intestinal motility. The Journal of physiology, Epub PMID, vol.546, pp.267-77, 2003.

J. Azcona-olivera, Y. Ouyang, J. Murtha, F. Chu, and J. Pestka, Induction of Cytokine mRNAs in Mice After Oral Exposure to the Trichothecene Vomitoxin (Deoxynivalenol): Relationship to Toxin Distribution and Protein Synthesis Inhibition, Toxicology and Applied Pharmacology, vol.133, issue.1, pp.109-129, 1995.
DOI : 10.1006/taap.1995.1132

J. Pestka and C. Amuzie, Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol: comparison of weanling and adult mice. Food and chemical toxicology: an international journal published for the, British Industrial Biological Research Association. Epub, vol.46, issue.8, pp.2826-2857, 2008.

O. Mikami, H. Yamaguchi, H. Murata, Y. Nakajima, and S. Miyazaki, Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets, Journal of Veterinary Science, vol.11, issue.2, pp.107-120, 2010.
DOI : 10.4142/jvs.2010.11.2.107

S. Ngampongsa, K. Ito, M. Kuwahara, S. Kumagai, and H. Tsubone, Arrhythmias and alterations in autonomic nervous function induced by deoxynivalenol (DON) in unrestrained rats. The Journal of toxicological sciences, pp.453-60, 2011.

K. Ossenkopp, M. Hirst, and W. Rapley, Deoxynivalenol (vomitoxin)-induced conditioned taste aversions in rats are mediated by the chemosensitive area postrema. Pharmacology, biochemistry, and behavior, Epub, vol.47, issue.2, pp.363-370, 1994.

C. Willis, C. Garwood, and D. Ray, A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix, Neuroscience, vol.150, issue.2, pp.498-509, 2007.
DOI : 10.1016/j.neuroscience.2007.09.023

N. Maolood and B. Meister, Protein components of the blood???brain barrier (BBB) in the brainstem area postrema???nucleus tractus solitarius region, Journal of Chemical Neuroanatomy, vol.37, issue.3, pp.182-95, 2009.
DOI : 10.1016/j.jchemneu.2008.12.007

G. Yang, B. Jarvis, Y. Chung, and J. Pestka, Apoptosis Induction by the Satratoxins and Other Trichothecene Mycotoxins: Relationship to ERK, p38 MAPK, and SAPK/JNK Activation, Toxicology and Applied Pharmacology, vol.164, issue.2, pp.149-60, 2000.
DOI : 10.1006/taap.1999.8888

Y. Moon and J. Pestka, Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicological sciences: an official journal of the Society of Toxicology, pp.373-8216, 2002.

H. Zhou, Z. Islam, and J. Pestka, Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicological sciences: an official journal of the Society of Toxicology, pp.130-172, 2003.

H. Zhou, A. Lau, and J. Pestka, Role of Double-Stranded RNA-Activated Protein Kinase R (PKR) in Deoxynivalenol-Induced Ribotoxic Stress Response, Toxicological Sciences, vol.74, issue.2, pp.335-379, 2003.
DOI : 10.1093/toxsci/kfg148

H. Bae, J. Gray, M. Li, L. Vines, J. Kim et al., Hematopoietic Cell Kinase Associates with the 40S Ribosomal Subunit and Mediates the Ribotoxic Stress Response to Deoxynivalenol in Mononuclear Phagocytes, Toxicological Sciences, vol.115, issue.2, pp.444-52, 2010.
DOI : 10.1093/toxsci/kfq055

K. He, H. Zhou, and J. Pestka, Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage Toxicological sciences: an official journal of the Society of Toxicology, pp.382-90, 2012.

D. Bunner and E. Morris, Alteration of multiple cell membrane functions in L-6 myoblasts by T-2 toxin: An important mechanism of action, Toxicology and Applied Pharmacology, vol.92, issue.1, pp.113-134, 1988.
DOI : 10.1016/0041-008X(88)90233-5

N. Yoshino, M. Takizawa, H. Akiba, H. Okumura, F. Tashiro et al., Transient elevation of intracellular calcium ion levels as an early event in T-2 toxin-induced apoptosis in human promyelotic cell line HL-60, SICI)5<234::AID- NT6>3.0.CO;2-E PMID, pp.234-275, 1996.
DOI : 10.1002/(SICI)(1996)4:5<234::AID-NT6>3.0.CO;2-E