R. M. Alexander, The orientation of muscle fibers in the myomeres of fishes, J Mar Biol Assoc UK, vol.49, pp.263-290, 1969.

A. P. Summers and T. J. Koob, The evolution of tendon-morphology and material properties, Comp Biochem Physiol A Mol Integr Physiol, vol.133, pp.1159-1170, 2002.

S. Gemballa, L. Ebmeyer, K. Hagen, T. Hannich, and K. Hoja, Evolutionary transformations of myoseptal tendons in gnathostomes, Proc Biol Sci, vol.270, pp.1229-1235, 2003.

H. A. Bremner and I. C. Hallett, Muscle Fiber-connective tissue junctions in the fish blue grenadier (Macruronus novaezelandiae) A scanning electron microscopy study, Journal of food science, vol.50, pp.975-980, 1985.

R. J. Bryson-richardson and P. D. Currie, The genetics of vertebrate myogenesis, Nat Rev Genet, vol.9, pp.632-646, 2008.

P. Y. Rescan, New insights into skeletal muscle development and growth in teleost fishes, J Exp Zool B Mol Dev Evol, vol.310, pp.541-548, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667559

C. A. Henry, I. M. Mcnulty, W. A. Durst, S. E. Munchel, and S. L. Amacher, Interactions between muscle fibers and segment boundaries in zebrafish, Dev Biol, vol.287, pp.346-360, 2005.

C. J. Snow and C. A. Henry, Dynamic formation of microenvironments at the myotendinous junction correlates with muscle fiber morphogenesis in zebrafish, Gene Expr Patterns, vol.9, pp.37-42, 2009.

P. Weber, D. Montag, M. Schachner, and R. R. Bernhardt, Zebrafish tenascin-W, a new member of the tenascin family, J Neurobiol, vol.35, pp.1-16, 1998.

H. L. Bader, D. R. Keene, B. Charvet, G. Veit, and W. Driever, Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes, Matrix Biol, vol.28, pp.32-43, 2009.

B. Charvet, A. Guiraud, M. Malbouyres, D. Zwolanek, and E. Guillon, Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction, Development, vol.140, pp.4602-4613, 2013.

H. Kudo, N. Amizuka, K. Araki, K. Inohaya, and A. Kudo, Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers, Dev Biol, vol.267, pp.473-487, 2004.

B. Charvet, M. Malbouyres, A. Pagnon-minot, F. Ruggiero, L. Guellec et al., Development of the zebrafish myoseptum with emphasis on the myotendinous junction, Cell Tissue Res, vol.346, pp.439-449, 2011.

M. Govoroun, F. Legac, and Y. Guiguen, Generation of a large scale repertoire of Expressed Sequence Tags (ESTs) from normalized rainbow trout cDNA 1ibraries, BMC Genomics, vol.7, p.196, 2006.

J. S. Joly, C. Joly, S. Schulte-merker, H. Boulekbache, and H. Condamine, The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos, Development, vol.119, pp.1261-1275, 1993.

I. Durán, M. Marí-beffa, J. A. Santamaría, J. Becerra, and L. Santos-ruiz, Freeze substitution followed by low melting point wax embedding preserves histomorphology and allows protein and mRNA localization techniques, Microsc Res Tech, vol.74, pp.440-448, 2011.

J. C. Gabillard, H. Duval, C. Cauty, P. Y. Rescan, and C. Weil, Differential expression of the two GH genes during embryonic development of rainbow trout Oncorhynchus mykiss in relation with the IGFs system, Mol Reprod Dev, vol.64, pp.32-40, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02674995

M. Saito, Y. Takenouchi, N. Kunisaki, and S. Kimura, Complete primary structure of rainbow trout type I collagen consisting of alpha1(I)alpha2(I)al-pha3(I) heterotrimers, Eur J Biochem, vol.268, pp.2817-2827, 2001.

N. Comes, L. K. Buie, and T. Borrás, Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma, Genes Cells, vol.16, pp.243-259, 2011.

P. Y. Rescan, C. Ralliere, F. Chauvigné, and C. Cauty, Expression patterns of collagen I (alpha1) encoding gene and muscle-specific genes reveal that the lateral domain of the fish somite forms a connective tissue surrounding the myotome, Dev Dyn, vol.233, pp.605-611, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02673038

E. M. Morin-kensicki and J. S. Eisen, Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish, Development, vol.124, pp.159-167, 1997.

A. E. Brent, R. Schweitzer, and C. J. Tabin, A somitic compartment of tendon progenitors, Cell, vol.113, pp.235-248, 2003.

K. Horiuchi, N. Amizuka, S. Takeshita, H. Takamatsu, and M. Katsuura, Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta, J Bone Miner Res, vol.14, pp.1239-1249, 1999.

C. J. Snow, M. T. Peterson, A. Khalil, and C. A. Henry, Muscle development is disrupted in zebrafish embryos deficient for fibronectin, Dev Dyn, vol.237, pp.2542-2553, 2008.

T. E. Hall, R. J. Bryson-richardson, S. Berger, A. S. Jacoby, and N. J. Cole, The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy, Proc Natl Acad Sci U S A, vol.104, pp.7092-7097, 2007.

M. F. Goody, M. W. Kelly, K. N. Lessard, A. Khalil, and C. A. Henry, Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis, Dev Biol, vol.344, pp.809-826, 2010.

M. Koch, B. Bohrmann, M. Matthison, C. Hagios, and B. Trueb, Large and small splice variants of collagen XII: differential expression and ligand binding, J Cell Biol, vol.130, pp.1005-1004, 1995.

S. Koshida, Y. Kishimoto, H. Ustumi, T. Shimizu, and M. Furutani-seiki, Integrin alpha5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos, Dev Cell, vol.8, pp.587-598, 2005.

T. Sztal, S. Berger, P. D. Currie, and T. E. Hall, Characterization of the laminin gene family and evolution in zebrafish, Dev Dyn, vol.240, pp.422-431, 2011.

T. E. Sztal, C. Sonntag, T. E. Hall, and P. D. Currie, Epistatic dissection of lamininreceptor interactions in dystrophic zebrafish muscle, Hum Mol Genet, vol.21, pp.4718-4731, 2012.

M. D. Ayala, E. Abellán, M. Arizcun, A. García-alcázar, and F. Navarro, Muscle development and body growth in larvae and early post-larvae of shi drum, Umbrina cirrosa L., reared under different larval photoperiod: muscle structural and ultrastructural study, Fish Physiol Biochem, vol.39, pp.807-827, 2013.

S. Grotmol, H. Kryvi, K. Nordvik, and G. K. Totland, Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon, Anat Embryol (Berl), vol.207, pp.263-272, 2003.

C. Mosimann, C. K. Kaufman, P. Li, E. K. Pugach, and O. J. Tamplin, Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish, Development, vol.138, pp.169-177, 2011.

S. Takeshita, R. Kikuno, K. Tezuka, and E. Amann, Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I, Biochem J, vol.294, pp.271-278, 1993.

J. Litvin, A. H. Selim, M. O. Montgomery, K. Lehmann, and M. C. Rico, Expression and function of periostin-isoforms in bone, J Cell Biochem, vol.92, pp.1044-1061, 2004.

O. Jaillon, J. M. Aury, F. Brunet, J. L. Petit, and N. Stange-thomann, Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype, Nature, vol.431, pp.946-957, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427605

S. Tozer and D. Duprez, Tendon and ligament: development, repair and disease, Birth Defects Res C Embryo Today, vol.75, pp.226-236, 2005.

B. Della-gaspera, A. A. Sequeira, I. Lecolle, S. Gallien, and C. L. , The Xenopus MEF2 gene family: evidence of a role for XMEF2C in larval tendon development, Dev Biol, vol.328, pp.392-402, 2009.

S. H. Devoto, W. Stoiber, C. L. Hammond, P. Steinbacher, and J. R. Haslett, Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish, Evol Dev, vol.8, pp.101-110, 2006.

E. Dumont, C. Rallière, and P. Y. Rescan, Identification of novel genes including Dermo-1, a marker of dermal differentiation, expressed in trout somitic external cells, J Exp Biol, vol.211, pp.1163-1168, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02656595

G. E. Hollway, R. Bryson-richardson, S. Berger, N. J. Cole, and T. E. Hall, Whole somite rotation generates muscle progenitor cell compartments in the developing embryo, Dev Cell, vol.12, pp.207-219, 2007.

F. Stellabotte, B. Dobbs-mcauliffe, D. A. Fernandez, X. Feng, and S. H. Devoto, Dynamic somite cell rearrangements lead to distinct waves of myotome growth, Development, vol.134, pp.1253-1257, 2007.

P. Steinbacher, V. Stadlmayr, J. Marschallinger, A. M. Sä-nger, and W. Stoiber, Lateral fast muscle fibers originate from the posterior lip of the teleost dermomyotome, Dev Dyn, vol.237, pp.3233-3239, 2008.

F. Stellabotte and S. H. Devoto, The teleost dermomyotome, Dev Dyn, vol.236, pp.2432-2443, 2007.