S. Pierre, Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes, Nat. Chem. Biol, vol.8, pp.957-959, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004114

C. T. Walsh, M. G. Acker, and A. A. Bowers, Thiazolyl peptide antibiotic biosynthesis: a cascade of post-translational modifications on ribosomal nascent proteins, J. Biol. Chem, vol.285, pp.27525-27531, 2010.

M. F. Freeman, Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides, Science, vol.338, pp.387-390, 2012.

L. Huo, S. Rachid, M. Stadler, S. C. Wenzel, and R. Muller, Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis, Chem. Biol, vol.19, pp.1278-1287, 2012.

P. G. Arnison, Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Nat. Prod. Rep, vol.30, pp.108-160, 2013.

W. J. Werner, In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea, Biochemistry, vol.50, pp.8986-8988, 2011.

H. J. Kim, GenK-catalyzed C-6' methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme, J. Am. Chem. Soc, vol.135, pp.8093-8096, 2013.

T. Frenzel, P. Zhou, and H. G. Floss, Formation of 2-methyltryptophan in the biosynthesis of thiostrepton: isolation of S-adenosylmethionine:tryptophan 2-methyltransferase, Arch. Biochem. Biophys, vol.278, pp.35-40, 1990.

P. Zhou, Biosynthesis of the antibiotic thiostrepton. Methylation of tryptophan in the formation of the quinaldic acid moiety by transfer of the methionine methyl group with net retention of configuration, J. Am. Chem. Soc, vol.111, pp.7274-7276, 1989.

J. C. Lewis, P. S. Coelho, and F. H. Arnold, Enzymatic functionalization of carbon-hydrogen bonds, Chem. Soc. Rev, vol.40, 2003.

P. A. Frey, A. D. Hegeman, and F. J. Ruzicka, The radical SAM superfamily, Crit. Rev. Biochem. Mol. Biol, vol.43, pp.63-88, 2008.

Z. Chen, S. Chakraborty, and R. Banerjee, Demonstration that mammalian methionine synthases are predominantly cobalamin-loaded, J. Biol. Chem, vol.270, pp.19246-19249, 1995.

L. Ljungdahl and E. Irion, Photolytic and reductive cleavage of co-carboxymethylcobalamin, Biochemistry, vol.5, pp.1846-1850, 1966.

N. Communications and . Doi, NATURE COMMUNICATIONS |, vol.6, p.8377

R. Banerjee, The Yin-Yang of cobalamin biochemistry, Chem. Biol, vol.4, pp.175-186, 1997.

R. G. Matthews, M. Koutmos, and S. Datta, Cobalamin-dependent and cobamide-dependent methyltransferases, Curr. Opin. Struct. Biol, vol.18, pp.658-666, 2008.

A. J. Zehnder and K. Wuhrmann, Titanium (III) citrate as a nontoxic oxidationreduction buffering system for the culture of obligate anaerobes, Science, vol.194, pp.1165-1166, 1976.

A. Benjdia, K. Heil, T. R. Barends, T. Carell, and I. Schlichting, Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme, Nucleic. Acids. Res, vol.40, pp.9308-9318, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647062

A. Benjdia, Anaerobic sulfatase-maturating enzymes: radical SAM enzymes able to catalyze in vitro sulfatase post-translational modification, J. Am. Chem. Soc, vol.129, pp.3462-3463, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01960680

A. Benjdia, J. Leprince, C. Sandstrom, H. Vaudry, and O. Berteau, Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct Cbeta H-atom abstraction catalyzed by a radical AdoMet enzyme, J. Am. Chem. Soc, vol.131, pp.8348-8349, 2009.

A. Benjdia, Anaerobic sulfatase-maturating enzymes -first dual substrate radical S-adenosylmethionine enzymes, J. Biol. Chem, vol.283, pp.17815-17826, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01960684

L. Decamps, Biosynthesis of F0, precursor of the F420 cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate, J. Am. Chem. Soc, vol.134, pp.18173-18176, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004118

B. Philmus, L. Decamps, O. Berteau, and T. P. Begley, Biosynthetic versatility and coordinated action of 5 0 -deoxyadenosyl radicals in deazaflavin biosynthesis, J. Am. Chem. Soc, vol.137, pp.5406-5413, 2015.

Q. Zhang, W. A. Van-der-donk, and W. Liu, Radical-mediated enzymatic methylation: a tale of two SAMS, Acc. Chem. Res, vol.45, pp.555-564, 2011.

J. C. Gebler, A. B. Woodside, and C. D. Poulter, Dimethylallyltryptophan synthase. An enzyme-catalyzed electrophilic aromatic substitution, J. Am. Chem. Soc, vol.114, pp.7354-7360, 1992.

M. R. Challand, F. T. Martins, and P. L. Roach, Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in Escherichia coli, J. Biol. Chem, vol.285, pp.5240-5248, 2010.

Y. Nicolet, L. Zeppieri, P. Amara, and J. C. Fontecilla-camps, Crystal structure of tryptophan lyase (NosL): evidence for radical formation at the amino group of tryptophan, Angew. Chem. Int. Ed. Engl, vol.53, pp.11840-11844, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01119795

W. B. Lott, A. M. Chagovetz, and C. B. Grissom, Alkyl radical geometry controls geminate cage recombination in alkylcobalamins, J. Am. Chem. Soc, vol.117, pp.12194-12201, 1995.

H. Fischer and L. Radom, Factors controlling the addition of carbon-centered radicals to alkenes-an experimental and theoretical perspective, Angew. Chem. Int. Ed, vol.40, pp.1340-1371, 2001.

S. Stoll, Hydrogen bonding of tryptophan radicals revealed by EPR at 700 GHz, J. Am. Chem. Soc, vol.133, pp.18098-18101, 2011.

E. T. Yukl, Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis, Proc. Natl Acad. Sci. USA, vol.110, pp.4569-4573, 2013.

S. Menon and S. W. Ragsdale, Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis, Biochemistry, vol.37, pp.5689-5698, 1998.

Y. Kung, Visualizing molecular juggling within a B12-dependent methyltransferase complex, Nature, vol.484, pp.265-269, 2012.

A. B. Stickrath, Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate recombination of alkylcobalamins, J. Phys. Chem. A, vol.113, pp.8513-8522, 2009.

K. Gruber, R. Reitzer, and C. Kratky, Radical shuttling in a protein: ribose pseudorotation controls alkyl-radical transfer in the coenzyme B(12) dependent enzyme glutamate mutase, Angew. Chem. Int. Ed. Engl, vol.40, pp.3377-3380, 2001.

J. Masuda, N. Shibata, Y. Morimoto, T. Toraya, and N. Yasuoka, How a protein generates a catalytic radical from coenzyme B(12): X-ray structure of a diol-dehydratase-adeninylpentylcobalamin complex, Structure, vol.8, pp.775-788, 2000.

J. L. Vey, Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme, Proc. Natl Acad. Sci. USA 105, pp.16137-16141, 2008.

J. Gui, C-H methylation of heteroarenes inspired by radical SAM methyl transferase, J. Am. Chem. Soc, vol.136, pp.4853-4856, 2014.

G. Bartoli, G. Bencivenni, and R. Dalpozzo, Organocatalytic strategies for the asymmetric functionalization of indoles, Chem. Soc. Rev, vol.39, pp.4449-4465, 2010.