S. Exigua-bracovirus-like-lectins-csmbv, C. Crpdv, H. Cvbv, L. Cppdv-lectin, C. Crbv-lectin et al., C-type-lectins from bracoviruses of Cotesia species C-type-lectins from bracoviruses of Glyptapanteles species Mr_HLBP Ctype-lectins from Hymenoptera, Nasonia vitripennis, Megachile rotundata Megachile rotundata, AAO74641.1), (CCQ71085.1), (AEE09562.1)ABK56997.1), (ABK56993.1), (ACE75074.1), (ACE75072.1) Microplitis demolitor (XP_001599898.2), (XP_003708137.1), (XP_003701025.1), (XP_003706756.1), (XP_003704952.1) (XP_008555202.1), Se-LL1, 2 and 3: Spodoptera exigua lepidopteran-like lectins 1, 2 and 3 (KP406775-77) Ms IML4: Manduca sexta immunolectin 4 (AAV41237.2), Ms_IML 4 2: M. sexta immunolectin 3 (AAV41236.1), Ms IML2: M. sexta immunolectin 2 (AAF91316.3), Ha CTL8: Helicoverpa armigera C-type lectin 8 (AFI47453.1), Ha LCT6: H. armigera C-type lectin 6 (AFI47451.1), Ha CL2: H. armigera C-type lectin 2 (ACI32834.1), Of_IML: Ostrinia furnacalis immunolectin (ABZ81710.1), Lo IML1: Lonomia oblique immunolectin 1 (AAV91436.1), Lo L3: Lonomia oblique lectin 3 (AAV91450.1), Ap_CTL: Antheraea pernyi C-type lectin (AGN70857.1)

. Ae_ctl, Dv_GJ: Drosophila virilis GJ17272 (XP_002051932.1), Dm BCTL: Drosophila melanogaster C-type lectin 27kD Dm CTL: Drosophila melanogaster C-type lectin 27kD, isoform A (NP_608858.3), Dy_GE: Drosophila yakuba GE14680 (XP_002087961.1), Dw_GK: Drosophila willistoni GK23915 (XP_002064562,1), Dmoj GI: Drosophila mojavensis GI15343 (XP_002001743,1) For the BV2-5 comparision, the names and accession numbers are: S.exigua_BV2-5: S, Md_UP: Musca domestica uncharacterized protein LOC101901048 De_GG: Drosophila erecta GG24353 (XP_001968708.1));; GI_HP1 and GI_HP2: Glyptapanteles indiensis hypothetical proteins L1_00460 and L1_00290 (ABK57032.1 and ABK57015.1); GF_CHP1 and GF_CHP2: Glyptapanteles flavicoxis hypothetical proteins (ACE75094.1 and ACE75115.1)

R. 1. Ochman, H. Lawrence, J. Groisman, and E. , Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, issue.6784, pp.299-304, 2000.
DOI : 10.1038/35012500

P. Keeling and J. Palmer, Horizontal gene transfer in eukaryotic evolution, Nature Reviews Genetics, vol.320, issue.8, pp.605-623, 2008.
DOI : 10.1038/nrg2386

M. Syvanen, Evolutionary Implications of Horizontal Gene Transfer, Annual Review of Genetics, vol.46, issue.1, pp.341-58, 2012.
DOI : 10.1146/annurev-genet-110711-155529

L. Boto, Horizontal gene transfer in the acquisition of novel traits by metazoans, Proceedings of the Royal Society B: Biological Sciences, vol.35, issue.1777, p.24403327, 2014.
DOI : 10.1016/S0966-842X(00)01703-0

A. Crisp, C. Boschetti, M. Perry, A. Tunnacliffe, and G. Micklem, Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes, Genome Biology, vol.16, issue.1, pp.50-25785303, 2015.
DOI : 10.1038/75556

C. Gilbert, A. Chateigner, L. Ernenwein, V. Barbe, A. Bézier et al., Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons, Nature Communications, vol.69, 2014.
DOI : 10.1128/JVI.01873-12

URL : https://hal.archives-ouvertes.fr/hal-00955963

N. Kondo, N. Nikoh, N. Ijichi, M. Shimada, and T. Fukatsu, Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect, Proceedings of the National Academy of Sciences, vol.99, issue.22, pp.14280-14285, 2002.
DOI : 10.1073/pnas.222228199

D. Hotopp, J. Clark, M. Oliveira, D. Foster, J. Fischer et al., Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes, Science, vol.317, issue.5845, pp.1753-1759, 2007.
DOI : 10.1126/science.1142490

L. Serbus and W. Sullivan, A Cellular Basis for Wolbachia Recruitment to the Host Germline, PLoS Pathogens, vol.15, issue.12, pp.190-18085821, 2007.
DOI : 10.1371/journal.ppat.0030190.sg002

B. Sun, J. Xiao, S. He, L. Liu, R. Murphy et al., Multiple ancient horizontal gene transfers and duplications in lepidopteran species, Insect Molecular Biology, vol.12, issue.1, pp.72-87, 2013.
DOI : 10.1111/imb.12004

N. Murphy, J. Banks, J. Whitfield, and A. Austin, Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage, Molecular Phylogenetics and Evolution, vol.47, issue.1, pp.378-95, 2008.
DOI : 10.1016/j.ympev.2008.01.022

A. Bézier, M. Annaheim, J. Herbinière, C. Wetterwald, G. Gyapay et al., Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus, Science, vol.323, issue.5916, pp.926-956, 2009.
DOI : 10.1126/science.1166788

E. Herniou, E. Huguet, J. Thézé, A. Bézier, G. Periquet et al., When parasitc wasps hijacked viruses: genomic and functionnal evolution of polydnaviruses, Phil Transac R Soc B, vol.368, pp.1-13, 2013.

M. Strand and G. Burke, Polydnavirus-wasp associations: evolution, genome organization, and function, Current Opinion in Virology, vol.3, issue.5, pp.587-94, 2013.
DOI : 10.1016/j.coviro.2013.06.004

D. Gundersden-rindal, C. Dupuy, E. Huguet, and J. Drezen, Parasitoid polydnaviruses: evolution, pathology and applications, Biocontrol Science and Technology, vol.67, issue.11, pp.1-61, 2013.
DOI : 10.1016/j.ibmb.2008.03.009

M. Strand, Polydnavirus Gene Products that Interact with the Host Immune System, Parasitoid viruses symbionts and pathogens, pp.149-61, 2012.
DOI : 10.1016/B978-0-12-384858-1.00012-6

N. Beckage, Polydnaviruses as Endocrine Regulators, Parasitoid viruses symbionts and pathogens, pp.163-171, 2012.
DOI : 10.1016/B978-0-12-384858-1.00013-8

A. Bézier, F. Louis, S. Jancek, G. Periquet, J. Thézé et al., Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.6, issue.7, p.23938757, 2013.
DOI : 10.1186/1741-7007-6-38

F. Louis, A. Bézier, G. Periquet, C. Ferras, J. Drezen et al., The Bracovirus Genome of the Parasitoid Wasp Cotesia congregata Is Amplified within 13 Replication Units, Including Sequences Not Packaged in the Particles, Journal of Virology, vol.87, issue.17, pp.9649-60, 2013.
DOI : 10.1128/JVI.00886-13

URL : https://hal.archives-ouvertes.fr/hal-00862145

G. Burke, K. Walden, J. Whitfield, H. Robertson, and M. Strand, Widespread Genome Reorganization of an Obligate Virus Mutualist, PLoS Genetics, vol.12, issue.(Pt 11), p.25232843, 2014.
DOI : 10.1371/journal.pgen.1004660.s007

C. Desjardins, D. Gundersen-rindal, J. Hostetler, L. Tallon, R. Fuester et al., Structure and evolution of a proviral locus of Glyptapanteles indiensis bracovirus, BMC Microbiology, vol.7, issue.1, pp.61-17594494, 2007.
DOI : 10.1186/1471-2180-7-61

G. Chevignon, J. Thézé, S. Cambier, J. Poulain, D. Silva et al., Functional Annotation of Cotesia congregata Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues, Journal of Virology, vol.88, issue.16, pp.8795-812, 2014.
DOI : 10.1128/JVI.00209-14

C. Desjardins, D. Gundersen-rindal, J. Hostetler, L. Tallon, D. Fadrosh et al., Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps, Genome Biology, vol.9, issue.12, 2008.
DOI : 10.1186/gb-2008-9-12-r183

A. Bézier, J. Herbinière, C. Serbielle, J. Lesobre, P. Wincker et al., Bracovirus gene products are highly divergent from insect proteins, Archives of Insect Biochemistry and Physiology, vol.49, issue.4, pp.172-87, 2008.
DOI : 10.1002/arch.20219

C. Serbielle, S. Chowdhury, S. Pichon, S. Dupas, J. Lesobre et al., Viral cystatin evolution and three-dimensional structure modelling: A case of directional selection acting on a viral protein involved in a host-parasitoid interaction, BMC Biology, vol.6, issue.1, pp.38-48, 2008.
DOI : 10.1186/1741-7007-6-38

URL : https://hal.archives-ouvertes.fr/hal-00324548

C. Serbielle, S. Dupas, E. Perdereau, F. Héricourt, C. Dupuy et al., Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases, BMC Evolutionary Biology, vol.12, issue.1, p.23270369, 2012.
DOI : 10.1093/oxfordjournals.molbev.a004233

URL : https://hal.archives-ouvertes.fr/hal-00780392

M. Beck, S. Zhang, K. Bitra, G. Burke, and M. Strand, The Encapsidated Genome of Microplitis demolitor Bracovirus Integrates into the Host Pseudoplusia includens, Journal of Virology, vol.85, issue.22, pp.11685-96, 2011.
DOI : 10.1128/JVI.05726-11

M. Dushay and N. Beckage, Dose-dependent separation of Cotesia congregata-associated polydnavirus effects on Manduca sexta larval development and immunity, Journal of Insect Physiology, vol.39, issue.12, pp.1029-1069, 1993.
DOI : 10.1016/0022-1910(93)90127-D

D. Quicke, Parasitic wasps. London: Chapman & Hall, 1997.

N. Beckage and F. Tan, Development of the braconid wasp Cotesia congregata in a semi-permissive noctuid host, Trichoplusia ni, Journal of Invertebrate Pathology, vol.81, issue.1, pp.49-52, 2002.
DOI : 10.1016/S0022-2011(02)00112-X

S. Schneider and J. Thomas, Accidental Genetic Engineers: Horizontal Sequence Transfer from Parasitoid Wasps to Their Lepidopteran Hosts, PLoS ONE, vol.23, issue.20, p.25296163, 2014.
DOI : 10.1371/journal.pone.0109446.s004

S. Zhan, C. Merlin, J. Boore, and S. Reppert, The Monarch Butterfly Genome Yields Insights into Long-Distance Migration, Cell, vol.147, issue.5, pp.1171-85, 2011.
DOI : 10.1016/j.cell.2011.09.052

G. Chevignon, S. Cambier, D. Silva, C. Poulain, J. Drezen et al., Transcriptomic response of Manduca sexta immune tissues to parasitization by the bracovirus associated wasp Cotesia congregata, Insect Biochemistry and Molecular Biology, vol.62, 2015.
DOI : 10.1016/j.ibmb.2014.12.008

URL : https://hal.archives-ouvertes.fr/hal-01316433

D. Smith, G. Lushai, and J. Allen, A classification of Danaus butterflies (Lepidoptera: Nymphalidae) based upon data from morphology and DNA, Zoological Journal of the Linnean Society, vol.144, issue.2, pp.191-212, 2005.
DOI : 10.1111/j.1096-3642.2005.00169.x

G. Lushai, D. Smith, D. Goulson, and J. Allen, Mitochondrial DNA Clocks and the Phylogeny of Danaus Butterflies, International Journal of Tropical Insect Science, vol.1, issue.04, pp.309-324, 2003.
DOI : 10.1111/j.1095-8312.1985.tb02048.x

A. Brower, N. Wahlberg, J. Ogawa, M. Boppré, and R. Vane-wright, Phylogenetic relationships among genera of danaine butterflies (Lepidoptera: Nymphalidae) as implied by morphology and DNA sequences, Systematics and Biodiversity, vol.343, issue.1, pp.75-89, 2010.
DOI : 10.1111/j.1096-0031.2006.00108.x

S. Abhiman, L. Iyer, and L. Aravind, BEN: a novel domain in chromatin factors and DNA viral proteins, Bioinformatics, vol.24, issue.4, pp.458-61, 2008.
DOI : 10.1093/bioinformatics/btn007

B. Park and Y. Kim, Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella, Journal of Invertebrate Pathology, vol.105, issue.2, pp.156-63, 2010.
DOI : 10.1016/j.jip.2010.06.003

Q. Dai, A. Ren, J. Westholm, A. Serganov, D. Patel et al., The BEN domain is a novel sequencespecific DNA-binding domain conserved in neural transcriptional repressors, Genes Dev, 2013.

L. Pascual, A. Jakubowska, J. Blanca, J. Canizares, J. Ferre et al., The transcriptome of Spodoptera exigua larvae exposed to different types of microbes, Insect Biochemistry and Molecular Biology, vol.42, issue.8, 2012.
DOI : 10.1016/j.ibmb.2012.04.003

G. Kergoat, D. Prowell, L. Ru, B. Mitchell, A. Dumas et al., Disentangling dispersal, vicariance and adaptive radiation patterns: A case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae), Molecular Phylogenetics and Evolution, vol.65, issue.3, pp.855-70, 2012.
DOI : 10.1016/j.ympev.2012.08.006

T. Ohkawa, L. Volkman, and M. Welch, Actin-based motility drives baculovirus transit to the nucleus and cell surface, The Journal of Cell Biology, vol.73, issue.2, pp.187-95, 2010.
DOI : 10.1016/0042-6822(88)90231-0

L. Volkman, Baculovirus Infectivity and the Actin Cytoskeleton, Current Drug Targets, vol.8, issue.10, pp.1075-83, 2007.
DOI : 10.2174/138945007782151379

R. Glatz, O. Schmidt, and S. Asgari, Characterization of a Novel Protein with Homology to C-type Lectins Expressed by the Cotesia rubecula Bracovirus in Larvae of the Lepidopteran Host, Pieris rapae, Journal of Biological Chemistry, vol.278, issue.22, p.301396200, 2003.
DOI : 10.1074/jbc.M301396200

J. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved Prediction of Signal Peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, issue.4, pp.783-95, 2004.
DOI : 10.1016/j.jmb.2004.05.028

M. Yoshiyama, Z. Tu, Y. Kainoh, H. Honda, T. Shono et al., Possible Horizontal Transfer of a Transposable Element from Host to Parasitoid, Molecular Biology and Evolution, vol.18, issue.10, pp.1952-1960, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003735

X. Guo, J. Gao, F. Li, and J. Wang, Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions, Scientific Reports, vol.28, pp.5119-5129, 2014.
DOI : 10.1038/srep05119

J. Thomas, S. Schaack, and E. Pritham, Pervasive Horizontal Transfer of Rolling-Circle Transposons among Animals, Genome Biology and Evolution, vol.2, issue.0, pp.656-64, 2010.
DOI : 10.1093/gbe/evq050

F. Pasquier-barre, C. Dupuy, E. Huguet, F. Monteiro, A. Moreau et al., Polydnavirus replication: the EP1 segment of the parasitoid wasp Cotesia congregata is amplified within a larger precursor molecule, Journal of General Virology, vol.83, issue.8, pp.2035-2080, 2002.
DOI : 10.1099/0022-1317-83-8-2035

G. Burke, S. Thomas, J. Eum, and M. Strand, Mutualistic Polydnaviruses Share Essential Replication Gene Functions with Pathogenic Ancestors, PLoS Pathogens, vol.8, issue.5, p.23671417, 2013.
DOI : 10.1371/journal.ppat.1003348.s004

S. Wyder, F. Blank, and B. Lanzrein, Fate of polydnavirus DNA of the egg???larval parasitoid Chelonus inanitus in the host Spodoptera littoralis, Journal of Insect Physiology, vol.49, issue.5, pp.491-500, 2003.
DOI : 10.1016/S0022-1910(03)00056-8

M. Beck, R. Inman, and M. Strand, Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions, Virology, vol.359, issue.1, pp.179-89, 2007.
DOI : 10.1016/j.virol.2006.09.002

G. Burke and M. Strand, Deep Sequencing Identifies Viral and Wasp Genes with Potential Roles in Replication of Microplitis demolitor Bracovirus, Journal of Virology, vol.86, issue.6, pp.3293-306, 2012.
DOI : 10.1128/JVI.06434-11

H. Wurtele, K. Little, and P. Chartrand, Illegitimate DNA integration in mammalian cells, Gene Therapy, vol.10, issue.21, pp.1791-1800, 2003.
DOI : 10.1038/sj.gt.3302074

K. Takasu, H. Le, and K. , The larval parasitoid Microplitis croceipes oviposits in conspecific adults, Naturwissenschaften, vol.81, issue.3, pp.200-206, 2007.
DOI : 10.1007/s00114-006-0181-3

C. Virto, D. Navarro, M. Tellez, S. Herrero, T. Williams et al., Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring, Journal of Invertebrate Pathology, vol.122, pp.22-29, 2014.
DOI : 10.1016/j.jip.2014.07.007

O. Cabodevilla, E. Villar, C. Virto, R. Murillo, T. Williams et al., Intra- and Intergenerational Persistence of an Insect Nucleopolyhedrovirus: Adverse Effects of Sublethal Disease on Host Development, Reproduction, and Susceptibility to Superinfection, Applied and Environmental Microbiology, vol.77, issue.9, pp.2954-60, 2011.
DOI : 10.1128/AEM.02762-10

J. Wilson, Notes on the Biology of Laphygma exigua Huebner, The Florida Entomologist, vol.16, issue.3, pp.33-42, 1932.
DOI : 10.2307/3492536

W. Weis, M. Taylor, and K. Drickamer, The C-type lectin superfamily in the immune system, Immunological Reviews, vol.380, issue.1, pp.19-34, 1998.
DOI : 10.1016/S0969-2126(00)00016-2

S. Lee, M. Nalini, and Y. Kim, A viral lectin encoded in Cotesia plutellae bracovirus and its immunosuppressive effect on host hemocytes, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.149, issue.4, pp.351-61, 2008.
DOI : 10.1016/j.cbpa.2008.01.007

D. Pan, N. He, Z. Yang, H. Liu, and X. Xu, Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization???, Developmental & Comparative Immunology, vol.29, issue.2, pp.103-115, 2005.
DOI : 10.1016/j.dci.2004.07.001

L. Chai, Y. Tian, D. Yang, J. Wang, and X. Zhao, Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera, Developmental & Comparative Immunology, vol.32, issue.1, pp.71-83, 2008.
DOI : 10.1016/j.dci.2007.04.006

P. Smits and J. Vlak, Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae, Journal of Invertebrate Pathology, vol.51, issue.2, pp.107-121, 1988.
DOI : 10.1016/0022-2011(88)90066-3

J. Cory and J. Myers, Within and between population variation in disease resistance in cyclic populations of western tent caterpillars: a test of the disease defence hypothesis, Journal of Animal Ecology, vol.52, issue.3, pp.646-55, 2009.
DOI : 10.1111/j.1365-2656.2008.01519.x

A. Jakubowska, H. Vogel, and S. Herrero, Increase in Gut Microbiota after Immune Suppression in Baculovirus-infected Larvae, PLoS Pathogens, vol.38, issue.5, p.23717206, 2013.
DOI : 10.1371/journal.ppat.1003379.s008

C. Kozak, The mouse "xenotropic" gammaretroviruses and their XPR1 receptor, Retrovirology, vol.7, issue.1, p.21118532, 2010.
DOI : 10.1186/1742-4690-7-101

G. Taylor, Y. Gao, and D. Sanders, Fv-4: Identification of the Defect in Env and the Mechanism of Resistance to Ecotropic Murine Leukemia Virus, Journal of Virology, vol.75, issue.22, pp.11244-11252, 2001.
DOI : 10.1128/JVI.75.22.11244-11248.2001

K. Fujino, M. Horie, T. Honda, D. Merriman, and K. Tomonaga, Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome, Proceedings of the National Academy of Sciences, vol.111, issue.36, pp.13175-80, 2014.
DOI : 10.1073/pnas.1407046111

P. Abel, R. Nelson, B. De, N. Hoffmann, S. Rogers et al., Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science, vol.232, issue.4751, pp.738-781, 1986.
DOI : 10.1126/science.3457472

J. Gottula and M. Fuchs, Toward a Quarter Century of Pathogen-Derived Resistance and Practical Approaches to Plant Virus Disease Control, Adv Virus Res, vol.75, issue.09, pp.161-83, 2009.
DOI : 10.1016/S0065-3527(09)07505-8

R. Malfavon-borja and C. Feschotte, Fighting Fire with Fire: Endogenous Retrovirus Envelopes as Restriction Factors, Journal of Virology, vol.89, issue.8, pp.4047-50, 2015.
DOI : 10.1128/JVI.03653-14

Y. Yan, A. Buckler-white, K. Wollenberg, and C. Kozak, Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus, Proceedings of the National Academy of Sciences, vol.106, issue.9, pp.3259-63, 2009.
DOI : 10.1073/pnas.0900181106

C. Bertsch, M. Beuve, V. Dolja, M. Wirth, F. Pelsy et al., Retention of the virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance, Biology Direct, vol.4, issue.1, 2009.
DOI : 10.1186/1745-6150-4-21

T. Flegel, Hypothesis for heritable, anti-viral immunity in crustaceans and insects, Biol Direct, 2009.

Y. Cai, F. J. Sun, S. Wang, F. Yang, K. Li et al., Interspecific Interaction Between <I>Spodoptera exigua</I> Multiple Nucleopolyhedrovirus and <I>Microplitis bicoloratus</I> (Hymenoptera: Braconidae: Microgastrina) in <I>Spodoptera exigua</I> (Lepidoptera: Noctuidae) Larvae, Journal of Economic Entomology, vol.105, issue.5, pp.1503-1511, 2012.
DOI : 10.1603/EC12077

T. Carver, N. Thomson, A. Bleasby, M. Berriman, and J. Parkhill, DNAPlotter: circular and linear interactive genome visualization, Bioinformatics, vol.25, issue.1, p.18990721, 2009.
DOI : 10.1093/bioinformatics/btn578

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612626

W. Mason, Abstract, Memoirs of the Entomological Society of Canada, vol.4, issue.S115, 1981.
DOI : 10.1017/S0007485300023117

P. Hernandez-martinez, J. Ferre, and B. Escriche, Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis, Journal of Invertebrate Pathology, vol.97, issue.3, pp.245-50, 2008.
DOI : 10.1016/j.jip.2007.11.001

P. Hernandez-martinez, B. Naseri, G. Navarro-cerrillo, B. Escriche, J. Ferre et al., Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis, Environmental Microbiology, vol.52, pp.2730-2737, 2010.
DOI : 10.1111/j.1462-2920.2010.02241.x

P. Hernandez-martinez, G. Navarro-cerrillo, S. Caccia, R. De-maagd, W. Moar et al., Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua, PLoS ONE, vol.72, issue.Pt 8, 2010.
DOI : 10.1371/journal.pone.0012795.s002

Y. Park, R. Gonzalez-martinez, G. Navarro-cerrillo, M. Chakroun, Y. Kim et al., ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis, BMC Biology, vol.12, issue.1, pp.46-56, 2014.
DOI : 10.1186/1741-7007-12-46

B. Langmead and S. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-366, 2012.
DOI : 10.1093/bioinformatics/btp352

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

D. Zerbino and E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Research, vol.18, issue.5
DOI : 10.1101/gr.074492.107

K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Research, vol.30, issue.14, pp.3059-66, 2002.
DOI : 10.1093/nar/gkf436

S. Pond, S. Frost, and S. Muse, HyPhy: hypothesis testing using phylogenies, Bioinformatics, vol.21, issue.5, pp.676-685, 2005.
DOI : 10.1093/bioinformatics/bti079

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.5819

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-91, 2007.
DOI : 10.1093/molbev/msm088

S. Kaba, A. Salcedo, P. Wafula, J. Vlak, and M. Van-oers, Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins, Journal of Virological Methods, vol.122, issue.1, 2004.
DOI : 10.1016/j.jviromet.2004.07.006

V. Luckow, S. Lee, G. Barry, and P. Olins, Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli, J Virol, vol.67, pp.4566-79, 1993.

W. Ij, E. Van-strien, J. Heldens, R. Broer, D. Zuidema et al., Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome, J Gen Virol, 1999.

J. Thompson, T. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research, vol.25, issue.24, pp.4876-82, 1997.
DOI : 10.1093/nar/25.24.4876

K. Nicholas, H. Nicholas, and D. Deerfield, GeneDoc: analysis and visualization of genetic variation, EMBNEWNEWS, vol.4, p.14, 1997.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2740, 2011.
DOI : 10.1093/molbev/msr121