B. D. Allen and S. L. Mayo, Dramatic performance enhancements for the FASTER optimization algorithm, J. Comput. Chem, vol.27, pp.1071-1075, 2006.

D. Allouche, Computational protein design as a cost function network optimization problem, Proceedings of Principles and Practice of Constraint Programming-CP 2012, pp.840-849, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268632

E. Althaus, A combinatorial approach to protein docking with flexible side chains, J. Comput. Biol, vol.9, pp.597-612, 2002.

G. Archontis and T. Simonson, A residue-pairwise generalized born scheme suitable for protein design calculations, J. Phys. Chem. B, vol.109, pp.22667-22673, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00770118

F. H. Arnold, Combinatorial and computational challenges for biocatalyst design, Nature, vol.409, pp.253-257, 2001.

F. C. Bernstein, The Protein Data Bank. A computer-based archival file for macromolecular structures, Eur. J. Biochem, vol.80, pp.319-324, 1977.

A. J. Bordner and R. A. Abagyan, Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations, Proteins, vol.57, pp.400-413, 2004.

B. Cabon, Radio link frequency assignment, Constraints, vol.4, pp.79-89, 1999.

D. A. Case, , vol.9, 2006.

C. Y. Chen, Computational structure-based redesign of enzyme activity, Proc. Natl Acad. Sci. USA, vol.106, pp.3764-3769, 2009.

M. C. Cooper, Soft arc consistency revisited, Artif. Intell, vol.174, pp.449-478, 2010.

B. I. Dahiyat and S. L. Mayo, De novo protein design: fully automated sequence selection, Science, vol.278, pp.82-87, 1997.

S. De-givry, Existential arc consistency: getting closer to full arc consistency in weighted CSPs, Proceedings of 19th International Joint Conference on Artificial Intelligence, pp.84-89, 2005.

S. De-givry, Mendelsoft: Mendelian error detection in complex pedigree using weighted constraint satisfaction techniques, Proceedings of 8th World Congress on Genetics Applied to Livestock Production, vol.2, 2006.

J. R. Desjarlais and T. M. Handel, De novo design of the hydrophobic cores of proteins, Protein Sci, vol.4, pp.2006-2018, 1995.

J. Desmet, The dead-end elimination theorem and its use in protein sidechain positioning, Nature, vol.356, pp.539-542, 1992.

J. Desmet, Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization, Proteins, vol.48, pp.31-43, 2002.

P. Gainza, Protein design using continuous rotamers, PLoS Comput. Biol, vol.8, p.1002335, 2012.

I. Georgiev and B. R. Donald, Dead-end elimination with backbone flexibility, Bioinformatics, vol.23, pp.185-194, 2007.

I. Georgiev, The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles, J. Comput. Chem, vol.29, pp.1527-1542, 2008.

I. Georgiev, Algorithm for backrub motions in protein design, Bioinfmatics, vol.24, pp.196-204, 2008.

D. B. Gordon and S. L. Mayo, Branch-and-terminate: a combinatorial optimization algorithm for protein design, Structure, vol.7, pp.1089-1098, 1999.

I. Grunwald, Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins, Philos. Trans. A Math. Phys. Eng. Sci, vol.367, pp.1727-1747, 2009.

M. A. Hallen, Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility, Proteins, vol.81, pp.18-39, 2013.

G. D. Hawkins, Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium, J. Phys. Chem, vol.100, pp.19824-19839, 1996.

H. W. Hellinga and F. M. Richards, Construction of new ligand binding sites in proteins of known structure: I. Computer-aided modeling of sites with predefined geometry, J. Mol. Biol, vol.222, pp.763-785, 1991.

E. J. Hong, Rotamer optimization for protein design through MAP estimation and problem-size reduction, J. Comput. Chem, vol.30, pp.1923-1945, 2009.

V. Hornak, Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins, vol.65, pp.712-725, 2006.

E. L. Humphris and T. Kortemme, Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design, Structure, vol.16, pp.1777-1788, 2008.

J. Janin, Conformation of amino acid sidechains in proteins, J. Mol. Biol, vol.125, pp.357-386, 1978.

C. L. Kingsford, Solving and analyzing side-chain positioning problems using linear and integer programming, Bioinformatics, vol.21, pp.1028-1036, 2005.

K. N. Kirschner, GLYCAM06: a generalizable biomolecular force field. Carbohydrates, J. Comput. Chem, vol.29, pp.622-655, 2008.

A. M. Koster, Solving frequency assignment problems via tree-decomposition, Electron. Notes Discrete Math, vol.3, pp.102-105, 1999.

B. Kuhlman and D. Baker, Native protein sequences are close to optimal for their structures, Proc. Natl Acad. Sci. USA, vol.97, pp.10383-10388, 2000.

J. Larrosa and T. Schiex, Solving weighted CSP by maintaining arc consistency, Artif. Intell, vol.159, pp.1-26, 2004.

J. Larrosa, Reversible DAC and other improvements for solving Max-CSP, Proceedings of the National Conference on Artificial Intelligence, pp.347-352, 1998.

J. Larrosa, Existential arc consistency: getting closer to full arc consistency in weighted CSPs, Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp.84-89, 2005.

A. R. Leach, Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm, Proteins, vol.33, pp.227-239, 1998.

A. Leaver-fay, An adaptive dynamic programming algorithm for the side chain placement problem, Pac. Symp. Biocomput, pp.16-27, 2005.

C. Lecoutre, Reasoning from last conflict (s) in constraint programming, Artif. Intell, vol.173, pp.1592-1614, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00868108

S. M. Lippow, Computational design of antibody affinity improvement beyond in vitro maturation, Nat. Biotechnol, vol.25, pp.1171-1176, 2007.

B. M. Nestl, Recent progress in industrial biocatalysis, Curr. Opin. Chem. Biol, vol.15, pp.187-193, 2011.

C. Pabo, Molecular technology: designing proteins and peptides, Nature, vol.301, 0200.

N. A. Pierce and E. Winfree, Protein design is NP-hard, Protein Eng, vol.15, pp.779-782, 2002.

K. Raha, Prediction of amino acid sequence from structure, Protein Sci, vol.9, pp.1106-1119, 2000.

T. Schiex, Arc consistency for soft constraints, Proceedings of Principles and Practice of Constraint Programming-CP, pp.411-425, 2000.

T. Schiex, Valued constraint satisfaction problems: hard and easy problems, Int. Joint Conf. Artif. Intell, vol.14, pp.631-639, 1995.

C. A. Voigt, Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design, J. Mol. Biol, vol.299, pp.789-803, 2000.

R. J. Wallace, Enhancements of branch and bound methods for the maximal constraint satisfaction problem, Proceedings of the thirteenth national conference on Artificial Intelligence (AAAI-96), pp.188-195, 1996.

J. Wang, Development and testing of a general AMBER force field, J. Comp. Chem, vol.25, pp.1157-1174, 2004.

J. Wang, Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model, vol.25, p.247260, 2006.

L. Wernisch, Automatic protein design with all atom force fields by exact and heuristic optimization, J. Mol. Biol, vol.301, pp.713-736, 2000.

M. Zytnicki, DARN! A weighted constraint solver for RNA motif localization, Constraints, vol.13, pp.91-109, 2008.