S. D. Khare, Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis, Nat. Chem. Biol, vol.8, pp.294-300, 2012.

N. A. Pierce and E. Winfree, Protein Design is NP-hard, Protein Engineering, vol.15, pp.779-782, 2002.

J. Desmet, The dead-end elimination theorem and its use in protein sidechain positioning, Nature, vol.356, pp.539-542, 1992.

C. A. Voigt, Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design, Journal of Molecular Biology, vol.299, pp.789-803, 2000.

D. Allouche, Computational Protein Design as a Cost Function Network Optimization Problem, Proc. of CP, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268632

G. Archontis and T. Simonson, A residue-pairwise Generalized Born scheme suitable for protein design calculations, J. Phys. Chem. B, vol.109, pp.22667-22673, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00770118

P. Gainza, Protein design with ensembles, flexibility, and provable algorithms, Methods Enzymol, vol.523, pp.87-107, 2013.

M. A. Hallen, Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility, Proteins, vol.81, pp.18-39, 2013.