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Abstract

In the field of sensitivity analysis, Sobol’ indices are widely used to assess
the importance of the inputs of a model to its output. Among the methods
that estimate these indices, the replication procedure is noteworthy for its
efficient cost. A practical problem is how many model evaluations must
be performed to guarantee a sufficient precision on the Sobol’ estimates.
The present paper tackles this issue by rendering the replication procedure
iterative. The idea is to enable the addition of new model evaluations to
progressively increase the accuracy of the estimates. These evaluations are
done at points located in under-explored regions of the experimental designs,
but preserving their characteristics. The key feature of this approach is the
construction of nested space-filling designs. For the estimation of first-order
indices, a nested Latin hypercube design is used. For the estimation of closed
second-order indices, two constructions of a nested orthogonal array design
are proposed. Regularity and uniformity properties of the nested designs
are studied.

Keywords: orthogonal array, iterative estimator, sensitivity analysis,
Sobol’ indices, space-filling designs
2000 MSC: 49Q12, 05B15

1. Introduction

Many mathematical models encountered in applied sciences involve nu-
merous poorly-known inputs. It is important for the practitioner to under-
stand how the output uncertainty can be apportioned to the uncertainty
in the inputs. One way to do so is to perform a global sensitivity analy-
sis in which statistical methods allow one to calculate importance measures.
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Among the large number of available approaches, the variance-based method
introduced by Sobol’ [1] relies on the calculation of sensitivity measures
called Sobol’ indices. The method is based on a variance decomposition of
the model output into fractions which can be attributed to sets of inputs,
assuming that the uncertainty on the sets of inputs is modeled by indepen-
dent probability distributions. The influences of each set are summarized
by the Sobol’ indices which are scalars between 0 and 1. The higher the
index the more influential the set. One can distinguish first-order indices
that estimate the main effect of each set of inputs from higher-order indices
that estimate the corresponding order of interactions between sets of inputs.
Various procedures have been proposed in the literature (see Saltelli [2] for
a survey) to estimate Sobol’ indices. They all rely on the choice of both an
estimator of the Sobol’ index and a design of experiments, simply referred
to as design, that contains the points on which the model is evaluated. One
key limitation of these methods is a need for a significant number of model
evaluations to ensure a proper exploration of the input space. This comes
at the price of rapidly being prohibitive.

The present paper offers a practical solution to this limitation through
the introduction of an iterative method, referred to as iterative replication
procedure. This procedure is designed to control the number of points on
which the model is evaluated, adding new points at each iteration and stop-
ping as soon as the Sobol’ indices estimates have reached a convergence
criterion. Such a procedure is possible as the formula of the Sobol’ index
estimator can be written iteratively. The proposed method relies on specific
experimental designs referred as replicated designs.

The notion of replicated designs was introduced by McKay [3]. Later on,
Mara et al. [4] combine these designs with “pick-freeze” estimators [1] to
estimate first-order Sobol’ indices. This procedure, called replication pro-
cedure, has been further studied and generalized in Tissot et al. [5] to the
estimation of closed second-order indices. This last generalization relies on
the construction of designs called orthogonal arrays (OA) (see [6]). The
replication procedure has the notable advantage of requiring the construc-
tion of only two designs, thus considerably reducing the estimation cost of
more classical methods. To better control the estimation cost, the replica-
tion procedure can be rendered iterative through the addition of new points
at each iteration.

Adding new points is straightforward when the initial design is com-
posed with independent and uniformly distributed points. However, in the
replication procedure as introduced in [5], the initial design possesses either
a structure of Latin hypercube or orthogonal array whether first- or closed
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second-order Sobol’ indices are estimated. Hence the need for a sampling
strategy that preserves these structures along the iterations.

For the estimation of first-oder Sobol’ indices, the proposed approach
takes advantage of an algorithm for the construction of nested Latin hyper-
cubes introduced by Qian [7]. Dealing with the case of closed second-order
indices is less straightforward. It requires nested orthogonal arrays whose
construction procedure is neither limited by the input space dimensions or
its discretization. Up to our knowledge, such a procedure has never been
proposed as existing algorithms do not meet these requirements [8, 9, 10].
Two construction approaches are discussed in the present paper, both pre-
serving a proper exploration of the input space. Each construction starts
with an initial orthogonal array and updates it sequentially by adding a
fixed number of new points.

The paper is organized as follows. Backgrounds on Sobol’ indices are
given in section 2. The estimator formula and its iterative version are de-
tailed. The replication procedure is described in section 3, both for the
estimation of first- and closed second-order indices. Section 4 is dedicated
to the iterative replication procedure. A focus on the construction of space
filling designs, both nested and replicated, is made : nested Latin hypercube
for first-order indices, nested orthogonal arrays for second-order indices. The
last section presents the numerical analysis. First, regularity and uniformity
properties of the nested designs are studied. Then, the iterative replication
procedure is illustrated on a toy example and an engineering application.

2. Iterative estimation of Sobol’ indices

2.1. Definition of Sobol’ indices

Consider the following model defined from a black box perspective:

f :

{
Rd → R

x = (x1, . . . , xd) 7→ y = f(x)
(1)

where y is the output of the model f , x the input vector and d the dimension
of the input space. Denote by ( the proper (strict) inclusion symbol and
by ⊆ the inclusion symbol.

Let (Ω,A,P) be a probability space. The uncertainty on the inputs
is modeled by a random vector X = (X1, . . . , Xd) whose components are
independent. Let u ⊆ {1, . . . , d}, Xu denotes a vector with components Xj ,
j ∈ u. Let PX = PX1 ⊗ . . .⊗ PXd be the distribution of X. Assuming that
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f ∈ L2(PX), the model f can then be uniquely decomposed into summands
of increasing dimensions (functional ANOVA decomposition [1, 11]),

f(X) = f0 +
∑
j

fj(Xj) +
∑
k<l

fk,l(Xk, Xl) + · · ·+ f1,...,d(X1, . . . , Xd) , (2)

where E[fu(Xu)fw(Xw)] = 0, ∀ (u,w) ⊆ {1, . . . , d}2, u 6= w. Denote Y =
f(X), this implies that f0 = E[Y ] and that the components are mutually
orthogonal with respect to PX . Let u ⊆ {1, . . . , d}, each component is
defined by:

fu(Xu) = E[Y |Xu]−
∑
v(u

fv(Xv) .

The functional decomposition can be used to measure the global sensitivity
of the output Y to Xu. Let σ2 = Var[Y ]. By squaring and integrating Eq.
(2), due to orthogonality constraints, one gets:

σ2 =
∑
j

σ2j +
∑
k<l

σ2k,l + · · ·+ σ21,...,d , (3)

where:
σ2u = Var[fu(Xu)] = Var[E[Y |Xu]]−

∑
v(u

σ2v .

Then it is natural to define, for each u ⊆ {1, . . . , d}, the Sobol’ index Su as:

Su =
σ2u
σ2

.

Let |u| denote the cardinal of u. The Sobol’ index Su measures the contri-
bution to σ2 of the interaction of order |u| between the Xj , j ∈ u. Dividing
Eq. (3) by σ2, the following equality is obtained:

1 =
∑

u⊆{1,...,d},u6=∅

Su . (4)

A straightforward implication of Eq. (4) is the following: if the sum of the
first-order indices is close to 1 then the model is free of interaction effects.
One can also defined for each u ⊆ {1, . . . , d} the closed Sobol’ index Su by:

Su =
Var[E[Y |Xu]]

σ2
.
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The closed Sobol’ index Su measures the contribution of the Xj , j ∈ u, by
themselves or in interaction with each other, to the variance σ2 of the model
output. As an example, if u = {k, l}, k 6= l, then,

Sk,l = Sk,l + Sk + Sl . (5)

Most of the time, no explicit formulation of Sobol’ indices is available. These
last must therefore be estimated.

2.2. Estimation of Sobol’ indices

This sections briefly reviews the estimation procedure for closed Sobol’
indices Su, u ⊆ {1, . . . , d} (see, e.g., [1]). Consider X and X ′ two indepen-
dent vectors distributed as the input vector. Let u ⊆ D and denote by −u
its complementary set in D. The hybrid point W = (Xu : X ′−u) is defined
by Wj = Xj if j ∈ u and Wj = X ′j otherwise. The associated model outputs
are defined by Y = f(X), Yu = f(Xu : X ′−u).

As underlined in Janon et al. [12, Lemma 1.2], the Sobol’ index Su can
be expressed as a correlation coefficient between Y and Yu,

Su =
Cov(Y, Yu)

Var[Y ]
. (6)

Most of the estimation procedures proposed in the literature are based on
Eq. (6), replacing both the numerator and the denominator by one of their
numerous estimators (see [? ] for a survey). The present paper focuses on
the estimator introduced in [13], as it was proven in [12] to have optimal
asymptotic variance properties. More precisely, consider two designs of size
n,

P = {Xi}ni=1, P ′ = {X ′i}ni=1 .

P (resp .P ′) is a matrix where each row is a point Xi = (Xi,1, . . . , Xi,d)
(resp. X ′i) of the input space and each column contains n realizations Xi,j

of each input Xj , j = 1, . . . , d. A third design Pu = {Xi,u : X ′i,−u}ni=1

is constructed from P and P ′ by columns substitution. By evaluating the
model with P and Pu , n realizations of Y and Yu are obtained, denoted by
{Yi}ni=1 and {Yi,u}ni=1. Then, the estimation of Su reads:

Ŝu =

1

n

n∑
i=1

YiYi,u −
(

1

n

n∑
i=1

Yi

)(
1

n

n∑
i=1

Yi,u

)
1

n

n∑
i=1

(Yi)2 −
(

1

n

n∑
i=1

Yi

)2 . (7)
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The main drawback of the aforementioned procedure is the high number
of model evaluations required. Estimating all first-order (resp. all closed
second-order) Sobol’ indices costs n(d+ 1) (resp. n(

(
d
2

)
+ 1)) model evalua-

tions. The larger n, the more accurate the estimation of the indices.
In [14, Theorem 2], subtle combinatorial arguments are used, which al-

low the estimation of all first-order and closed second-order indices (among
others) at a linear cost of n(2d+ 2) model evaluations.

More recently, the replication procedure – procedure based on replicated
designs – has been proposed to get rid of the dependence in the input space
dimension d. All first-order and all closed second-order Sobol’ indices are
estimated with 4n model evaluations (see [4, 5]).

2.3. Iterative scheme

For the sake of both storage ability and computational cost, it is inter-
esting to design an iterative scheme for the estimation of Sobol’ indices. The
underlying procedure consists in sequentially adding new points to perform
new model evaluations and stopping once the estimates have reached a con-
vergence criterion. The iterative scheme relies on an iterative version of Eq.
(7) and operates as follows.

Consider a pair of nested designs (P`,P ′`)l≥0. Denote by B`, ` ≥ 0, a
block, that is a set of points on which the model is evaluated. The two
nested designs are build by blocks concatenation, according to the following
scheme: {

P−1 = ∅
P` = P`−1 ∪B`

,

{
P ′−1 = ∅
P ′` = P ′`−1 ∪B′`

, ` ≥ 0 . (8)

At iteration `, the new blocks B` and B′` contain each m` new points and

n` =
∑`

k=0mk denote the common size of P` and P ′`. Keeping the notation
introduced in Section 2.2,

P` = {Xi}n`i=1 , P ′` = {X ′i}n`i=1 , Pu` = {Xi,u : X ′i,−u}n`i=1 for u ⊆ {1, . . . , d} .

The model evaluations obtained with P` and Pu` read:

⋃̀
k=0

{Y i}nki=nk−1+1 ,
⋃̀
k=0

{Y i
u}nki=nk−1+1 ,

with n−1 = 0. Then, Su is estimated with:

Ŝ
(`)

u =
φ` − ψ`ξ`

V`
, (9)
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Algorithm 1 Iterative estimation of Sobol’ indices

1: `← 0, Ŝ
(0)

u ← 0, test ← true
2: P0 ← B0, P ′0 ← B′0
3: while test do
4: for u ⊂ D do
5: Compute {Y i}nli=nl−1+1 and {Y i

u}nli=nl−1+1 from Bl and B′l

6: Evaluate Ŝ
(`)

u with (9)
7: end for
8: test ← stopping criterion
9: P`+1 ← P` ∪B`+1

P ′`+1 ← P ′` ∪B′`+1

10: `← `+ 1
11: end while
12: Return the Sobol’ estimates

where φ`, ψ`, ξ` and V` are defined by the following recursive formulae:

n` = n`−1 +m` ,

n`φ` = n`−1φ`−1 +
n∑̀

i=n`−1+1
Y iY i

u ,

n`ψ` = n`−1ψ`−1 +
n∑̀

i=n`−1+1
Y i ,

n`ξ` = n`−1ξ`−1 +
n∑̀

i=n`−1+1
Y i
u ,

n`V` = n`−1(V`−1 + ψ2
`−1) +

n∑̀
i=n`−1+1

(Y i)2 − n`ψ2
` ,

and n−1 = 0, φ−1 = 0, ψ−1 = 0, ξ−1 = 0, V−1 = 0. It is important to note
that the expressions of φ`, ψ`, ξ` and V` only involve the model evaluations
obtained with the latest couple of replicated blocks. Hence the opportunity
to store only the last subset of model evaluations instead of the whole set.

Algorithm 1 summarizes the main steps of the iterative scheme. The set
D at step 4 equals either {1, . . . , d} or {(k, l) ∈ {1, . . . , d}2; k < l} whether
first-order or closed second-order indices are estimated. In any case, the cost
of this iterative procedure equals 2×∑K

k=0mk if stopped at step K.

Stopping criterion. The form of the stopping criterion, variable test in
Algorithm 1, is based on a reasonable heuristic convergence criterion. At
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each iteration `, the following quantity is evaluated:

e(`−1) =
∣∣∣Ŝ(`)

u − Ŝ
(`−1)
u

∣∣∣ , (10)

where |.| denotes the absolute value function. Equation (10) reads as the
positive difference between two consecutive estimation of a Sobol’ index.
Let `0 and `max be two positive integers. The former defines a number of
consecutive iterations, the latter defines the maximum number of iterations
allowed in Algorithm 1. Let ε > 0, the algorithm stops at step ` ≥ `0 if:

` ≥ `max or ∀ u ∈ D : e(`−`0) < ε, . . . , e(`−1) < ε . (11)

In other words, Eq. (11) checks if all the Sobol’ estimates have stopped
significantly varying over the last `0 iterations or if a maximum number of
iterations has been reached. The parameters ε, `0 and `max have to be tuned
adequately.

At this point, the iterative scheme is generic enough that it could be com-
bined with most of the classical estimation procedures. The main contribu-
tion of this paper is to adapt the present iterative scheme for the replication
procedure, resulting in an iterative version of the replication procedure. In
this particular framework, the iterative scheme needs to be tuned so that
at each iteration, the designs P` and P ′` preserve the structure of the de-
signs used in the replication procedure. This is the topic of Sections 3 and
4. The former briefly reviews the original replication procedure while the
latter introduces its iterative version.

3. Replication procedure

Without loss of generality, the inputs X1, . . . , Xd are assumed to be
independent random variables uniformly distributed on [0, 1]. Note that the
replication procedure can easily be generalized to any marginal distributions
through many procedures, for instance the Smirnov transform (see [15] for
others approaches). The replication procedure owns its name to the nature
of the designs it relies on, the so-called replicated designs:

Definition 1. Let P = {Xi}ni=1 and P ′ = {X ′i}ni=1 be two non-identical
designs in [0, 1]d. P and P ′ are two replicated designs of order p, if for any
u ⊂ {1, . . . , n} such that |u| = p, there exists a permutation πu of {1, . . . , n}
such that ∀i ∈ {1, . . . , n}, xi,u = x′πu(i),u .
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Example. Consider the two designs:

P =


0.08 0.46 0.21
0.15 0.77 0.43
0.89 0.30 0.05
0.70 0.23 0.95

 , P ′ =


0.89 0.30 0.95
0.15 0.23 0.21
0.70 0.46 0.43
0.08 0.77 0.05

 .

P and P ′ are two replicated designs of order 1. Indeed, for any j ∈ {1, . . . , d},
the j-th columns of P and P ′ share the same unordered set of values. In
particular, the permutation π1 = (4, 2, 1, 3) orders the first column of P ′
into the first column of P.

The key point of the replication procedure is to use the permutation πu
of Definition 1 to mimic the vector {Yi,u}ni=1 of Eq. (7). This is done as
follows. Denote by {Yi}ni=1 and {Y ′i }ni=1 the two sets of model evualations
obtained with P and P ′ respectively. From Definition 1, it results that,

Y ′πu(i) = f(X ′πu(i),u : X ′πu(i),−u), = f(Xi,u : X ′πu(i),−u).

Hence, while Yi is evaluated on Xi, Y
′
πu(i)

is evaluated on X ′πu(i),u, where the

components indexed by i ∈ u are frozen and the d−|u| other components are
resampled. Therefore, the Sobol’ index Su can be estimated by applying Eq.
(7) with Y ′πu(i) in place of Yi,u without requiring further model evaluations.
Applying this combinatorial trick with all u, it is possible to estimate all
closed Sobol’ indices {Su}u⊆{1,...,d},|u|=p by evaluating the model on the set
of 2n points contained in P ′ ∪ P.

In [5], the authors suggest the use of two replicated Latin hypercube
designs to estimate all first-order Sobol’ indices, and the use of two replicated
orthogonal arrays of strength two to estimate all closed second-order Sobol’
indices. The choice and description of such designs in discussed below.

3.1. Estimation of first-order indices

Different strategies can be applied to build two replicated designs of
order 1. In [4], P and P ′ are composed with i.i.d points. In [5], the authors
propose to use Latin hypercube designs insuring most of the time a better
exploration of the input space:

Definition 2 (Latin hypercube design). Denote by Πn the set of all the
permutations of {1, . . . , n} and let π1, . . . , πd be d independent random vari-
ables uniformly distributed on Πn. P = {Xi}ni=1 is a Latin hypercube design
if:

Xi =

(
π1(i)− Ui,1

n
, . . . ,

πd(i)− Ui,d
n

)
, (12)
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where the Ui,j are independent random variables uniformly distributed on
[0, 1] and independent of the πj.

To estimate all first-order Sobol’ indices, the authors in [5] first create
a Latin hypercube design P, in the sense of Definition 2 above. They then
create a replicated design, P ′, by permuting independently the values of
each column of P. A nice property is that the replicated design P ′ is also
a Latin hypercube design. The designs P and P ′ are replicated designs of
order 1.

3.2. Estimation of closed second-order indices

The generalization of the replication procedure to the estimation of
closed second-order indices was introduced in [5]. It requires the construc-
tion of two replicated designs of order two. The construction in [5] relies
on orthogonal arrays of strength two. The definition of an orthogonal array
given in [6, Definition 1.1] is recalled hereafter:

Definition 3 (Orthogonal array). A n × d array A = {Ai}ni=1, Ai =
(Ai,1, . . . , Ai,d), with values from a set S of cardinality q is said to be an
orthogonal array with q levels, strength t (0 ≤ t ≤ d) and index λ if every
n × t sub-array of A contains each t-tuple based on S exactly λ times as a
row. The orthogonal array A satisfies n = λqt. It is denoted by OAλ(q, d, t).

The construction of two replicated designs P and P ′ of order two pro-
posed in [5] starts with the construction of an orthogonal array A with q
levels, strength t = 2 and index λ = 1. The q levels are then substituted
by 1, . . . , q. Then, A′ is obtained by permuting independently the values of
each column of A. Denote by ♦ the operator achieving this rearrangement:

A′ = ♦(A, {π1, . . . , πd})⇔ A′i = (π1(Ai,1), . . . , πd(Ai,d)) , i = 1, . . . , n.
(13)

Construction procedures for orthogonal arrays can be found, e.g., in [6].
In some sense, A and A′ are replicated designs of order two, except that

they are not valued in [0, 1]d but in {1, . . . , q}d. Both designs P and P ′
are obtained from A and A′ by a randomization procedure, described in
Definition 4 below.

Definition 4 (Randomized replicated orthogonal arrays). Let A = {Ai}q
t

i=1

be an OA1(q, d, t). Denote by Πq the set of all the permutations of {1, . . . , q}
and let π1, . . . , πd be d independent random variables uniformly distributed
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on Πq. P = {Xi}q
t

i=1 and P ′ = {X ′i}q
t

i=1 are two replicated orthogonal arrays
if:

Xi =

(
Ai,1 − UAi,1,1

q
, . . . ,

Ai,d − UAi,d,d
q

)
,

X ′i =

(
A′i,1 − UA′i,1,1

q
, . . . ,

A′i,d − UA′i,d,d
q

)
,

(14)

where the Ui,j are independent random variables uniformly distributed on
[0, 1] and independent of the πj.

Based on P and P ′, two randomized replicated orthogonal arrays, the
replication procedure can be applied to estimate all closed second-order
Sobol’ indices with 2n model evaluations, with n = q2.

Then, both sets of all first-order and all closed second-order indices can
be estimated at a cost of 2n+ 2q2 model evaluations.

4. Iterative replication procedure using replicated pair of nested
designs

This section describes how the iterative scheme of Section 2.3 (algorithm
1) can be applied within the replication framework ; at the cost that, at each
step `, the pair of designs (P`,P ′`) has to be replicated. For the estimation
of first-oder indices, a replicated pair of nested Latin hypercube designs is
used. Its construction relies on an algorithm proposed by Qian in [7] and is
detailed in Section 4.1. As for the estimation of closed second-order indices,
a replicated pair of nested orthogonal arrays of strength two is used. Its
construction is presented in Section 4.2.

4.1. Latin hypercube designs, replicated and nested

The algorithm introduces in [7, Section 5] offers a practical solution to
iteratively augment the number of points of a Latin hypercube design while
preserving its Latin hypercube structure. The resulting design, called nested
Latin hypercube design, is partitioned into blocks that define multiple layers.

As an illustration, a two dimensional nested Latin hypercube design with
three layers is presented in Fig. 1. Each layer possesses a Latin hypercube
structure in a grid progressively refined. An important point to note is that
the number of layers (therefore blocks) partitioning the design and the layer
size have to be specified beforehand. This intrinsically defines the maximum
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Figure 1: Nested Latin hypercube design with three layers (a), (b), (c). The symbols
(cercle, square, triangle) identify the new points (i.e the blocks) added at each iteration.

number of iterations `max in Algorithm 1 as well as the discretization of the
input space at each iteration.

For the estimation of first-order indices, the two nested designs P` and P ′`
of Eq. (8) are created form block concatenation and replicated as follows.
First, the block B` is constructed using the algorithm in [7]. Then, the
associated block B′` is replicated following the process described in Section
3.1, that is by permuting independently the values in each column of B`.
This single operation guarantees that at each iteration ` ≥ 0, the two designs
P` and P ′` possess a structure of Latin hypercube and are two replicated
designs of order 1. The sizes of P` and P ′` equal 2`.

4.2. Randomized orthogonal arrays of strength two, replicated and nested

As mentioned in Section 3.2, the replication procedure requires two repli-
cated orthogonal arrays of strength two for the estimation of closed second-
order indices. Therefore, a nested version of these designs has to be devised
to used the iterative scheme of Eq. (8). Various construction strategies have
already been proposed in the literature, in [8, 9, 10] notably. The strategies
proposed in these papers have at least one of the following restrictions:

• The size of the initial design is rather large, hence at each step only a
too large number of new points can be added.

• The construction deals only with specific values of the input space
dimension d.

• The discretization is not the same in each dimension, more precisely
only one dimension is finely discretized at the expense of the others.
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Figure 2: OA3(3, 3, 2) that can be partitioned into three distinct OA1(3, 3, 2) (a) first
OA1(3, 3, 2). (b) second OA1(3, 3, 2). (c) third OA1(3, 3, 2).

An alternative approach is presented in this section, free from all these
limitations. The nested orthogonal array build is an OAλ(q, d, 2) where
λ > 1. It can be partitioned into λ OA1(q, d, 2), from which one can sample
λ blocks by applying the randomization process detailed in Definition 4.

As in the construction of nested Latin Hypercube, the idea of the present
approach is to fix the final input space discretization beforehand. In other
words, this defines the final d-hypercube that will be progressively filled
with λ row-wised distinct OA1(q, d, 2). By row-wised distinct it is to be
understood that if two OA1(q, d, 2) among the λ are chosen then they do not
share a common row. More precisely, two rows are said distinct if they differ
in at least one component. A visual interpretation of a row is proposed in
Fig. 2, where each row of an orthogonal array is viewed as a sub-hypercube.
This figure illustrates the example of an OA3(3, 3, 2), partitioned into three
distinct OA1(3, 3, 2), each respectively plotted in each subfigure.

The present approach to build the sequence of nested randomized or-
thogonal array of strength two P` and P ′` follows the following steps:

1. First, construct an initial OA1(q, d, 2) noted A0.

2. Then at each step ` ≥ 1, a new OA1(q, d, 2), noted A`, is constructed
from A0. Two methods may be used to ensure that A` is distinct from
Ak, 0 ≤ k < `. They will be referred as the accept-reject and the
algebraic methods and are detailed below.

3. Substituting A` for A in Definition 4, i.e. by randomization of the OA,
one can obtain the two blocks B` and B′`. These two blocks define the
new points on which the model will be evaluated. The fact that the
OA’s are distinct ensures that these points are located in unexplored
regions of the input space.
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Algorithm 2 Accept-reject method for the construction of A`

1: Set bool ← false
2: while !bool do
3: Sample π1, . . . , πd in Πq

4: Construct A` = ♦(A0, {π1, . . . , πd}) with (13)
5: for k = 0, . . . , `− 1 do
6: boolk ← rows(A`) ∩ rows(Ak) == ∅
7: end for
8: bool ← ∀k : boolk
9: end while

As a result, P` and P ′` both have a structure ofOA`(q, d, 2) and are replicated
designs of order 2. Additionally, their size equal ` × q2. The accept-reject
and the algebraic methods differ on the way A` is constructed. This last
step is detailed hereafter for each method.

Method 1: accept-reject. The pseudo-code described in Algorithm 2 details
the construction of A`. It uses the operator ♦ defined in Eq. (13). The
idea is to randomly construct a new orthogonal array from A0 using ♦ and
to test if its rows are distinct from those of the previous orthogonal arrays
constructed; namely A`−1, A`−2, . . . , A0. Note that this test become com-
putationally expensive for small input space dimensions as the probability
of acceptation decreases faster.

Method 2: Algebraic method. From now on, the set S of the q levels of an
orthogonal array (see Definition 3) is identified with the Galois field of order
q, denoted by GF (q), where q is a prime number or a power of a prime
number (q = pα, p prime and α ∈ N).

Define the following set:

C =
{
g = (0, 0, g3, . . . , gd) | ∀i ≥ 3, gi ∈ GF (q)

}
( GF (q)d .

The pseudo-code described in Algorithm 3 below details the construction of
A`. ⊕ denotes the addition in GF (q)d.

The idea of the algebraic method is to construct a partition of the dis-
cretized input space and select A` from this partition. A` is viewed as a
coset of A0 and is drawn from the set C. Proposition 1 below guarantees
that A` constructed in Variant 3 is an OA1(q, d, 2).

Proposition 1. Consider A0 an OA1(q, d, 2) based on GF (q)d. The results
are as follows:
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Algorithm 3 Algebraic method for the construction of A`

1: Choose g` ∈ C
2: Construct A` = g`A0 = {g` ⊕A0i}q

2

i=1, A0i = (A0i,1, . . . , A0i,d)
3: C ← C \ {g`}

i) ∀g ∈ GF (q)d, gA0 is an OA1(q, d, 2)

ii) ∀g, g′ ∈ C, such that g 6= g′, gA0∩ g′A0 = ∅. In other words, the sets
{gA0} form a partition of GF (q)d.

Proof.

(i) Let g = (g1, . . . , gd) ∈ GF (q)d. Consider A0k, A0l two columns of A0.
Denote by E the group (GF (q),+). Since gkE × glE is isomorph to
E ×E, the 2-tuples (A0i,k + gk, A0i,l + gl) obtained after addition are
all two by two distinct.

(ii) The proof can be found in [16] where an orthogonal array is regarded
as a “systematic linear code”.

The main advantage of the algebraic method is that the maximum num-
ber of blocks one can construct is known beforehand. Indeed, as a con-
sequence of Proposition 1 - (ii), the maximum number of blocks one can
construct equals the cardinality of C, that is qd−2. If this upper bound is
reached, the blocks A0, A1, . . . , Aqd−2−1 form a partition of the discretized
input space.

5. Numerical tests and illustrations

The first part of this section focuses on the space-filling properties of
the nested design used in our iterative replication procedure. Then, two
applications of the proposed algorithm are detailed, on a test function and
on an engineering example.

5.1. Space-filling properties

Three criteria are selected to study the properties of nested designs:
maximin [17], emst (euclidean minimal spanning tree [18]) and L2 star dis-
crepancy [19]. The maximin criterion returns the minimum distance among
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Figure 3: (color online) Interpretation graph of the emst criterion. The uniform distribu-
tion is used as the reference distribution.

all pairs of points of a design. It can be interpreted as follows: the higher the
value, the more regular the scattering of design points. The emst criterion
can be interpreted using a (µ, σ) graph (see Fig. 3 - (c)), called interpreta-
tion graph. A minimal spanning tree is constructed from the design, then
mean (µ) and standard deviation (σ) of the tree edges lengths are evaluated.
A value of the emst criterion is represented as a point in the (µ, σ) graph.
The uniform distribution, that is i.i.d sampling, is used as a reference. A
design having a higher value for µ and a smaller value for σ than those of
a uniform design is said more regular. Maximin and emst criteria provide
together a good estimation of a design regularity. The L2 star discrepancy
criterion measures the uniformity property of a design. The smaller the
value, the more uniform the design.

First, space-filling properties of the nested Latin hypercube design (nest-
ed LHd) are compared with those of (i) a uniform design (obtained through
i.i.d sampling) and (ii) a Latin hypercube design (LHd).

Figure 4 shows the results obtained with the three criteria for each de-
sign. The results are averaged over r = 100 repetitions. The input space
dimension d equals 5. The comparison is made for the sizes n of each design
equal (23, 24, . . . , 210). For the nested LHd, these sizes correspond to those
of design P` augmented over 8 consecutive steps.

Both the LHd and the nested LHd give similar results for the three cri-
teria and both better results than the uniform design. As such, the iterative
replication procedure comes with no loss in terms of space-filling properties
of the designs.
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Figure 4: (color online) Averaged results of maximin, emst and star discrepancy criteria
over 100 repetitions for different sizes n of the designs used for the estimation of first-order
indices. A logarithmic scale is used for the x-axis of graphs (a) and (b).

Remark. One other class of designs well suited for the estimation of first-
order Sobol’ indices are low discrepancy sequences. These sequences are
points sets sampled so as to approximate as close as possible a uniform
distribution and are known to achieve both uniformity and regularity prop-
erties. Such sequences could be used in the iterative replication procedure
in place of nested Latin hypercube designs. This alternative has recently
been studied in [20].

A second comparison is carried out between the following designs: (i)
uniform design, (ii) “non-iterative” OA, (iii) accept-reject and (iv) algebraic.
Design (ii) refer to the orthogonal array used in [5]. Designs (iii) and (iv)
refers to the design constructed with either the accept-reject or the algebraic
method of Section 4.2. Results are again averaged over r = 100 repetitions
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Figure 5: (color online) Averaged results of maximin, emst and star discrepancy criteria
over 100 repetitions for different sizes n of the designs used for the estimation of closed
second-order indices.

and the input space dimension still equals 5. Figure 5 shows the results
obtained with each of the three criteria.

For the sake of visualization, results are represented only for the following
sizes of the designs: (3 × 82, 5 × 82, 8 × 82, 11 × 82, 15 × 82, 18 × 82). In
terms of emst and discrepancy criteria, the “non-iterative” OA gives the best
results while results for the accept-reject and algebraic designs are similar.
The algebraic design gives better results for the maximin criterion than the
accept-reject design.

The main conclusion is that the algebraic design possesses regularity and
uniformity properties overall slightly better than those of the accept-reject
design. These two designs possess slightly worse space-filling properties than
their counterpart used in [5]. This difference can be explained by the lack of
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progressive discretization of the inputs in both the algebraic and the accept-
reject method. However, that is largely offset by the possibility to perform
an iterative estimation of the indices.

5.2. Application to a toy example

The iterative replication procedure is tested and compared to the clas-
sical replication procedure using the Bratley et al. function [21],

f(X1, . . . , Xd) =

d∑
i=1

(−1)i
i∏

k=1

Xk ,

where X1, . . . , Xd are independent random variables uniformly distributed
on [0, 1]. Both first- and closed second-order Sobol’ indices are estimated
with each procedure. Both procedure are repeated r = 100 times to get
samples of estimates. The input space dimension is d = 6. Since f has an
analytical expression, theoretical values of the Sobol’ indices can be precisely
calculated through symbolic integrals evaluations.

Recall `0 and `max the two parameters of the stopping criterion defined
by Eq. (11). Let K be any integer such that `0 ≤ K ≤ `max. Let rK denote
the number of repetitions where the estimation procedure stopped at step
K, then

∑`max
K=`0

rK = r = 100. Let α ∈ (0, 1) and q̃α denote the empirical
quantile of order α defined by:

q̃α = inf { v ∈ N, x ≥ `0, r`0 + . . .+ rv ≥ r α } .

To reach a fair comparison, Su is also estimated r = 100 times with the
classical replication procedure where the size of the two replicated designs
equals the size of the designs Pq̃1/2 and P ′q̃1/2 in the iterative procedure.

5.2.1. Estimation of first-order indices

A small value for `max is selected to highlight that the iterative replication
procedure can perform as well as the classical one for a restricted budget of
evaluation points. The parameters of the stopping criterion (Eq. (11)) are
set as follows: ε = 0.15, `0 = 2 and `max = 9. The size of designs P` and P ′`
at the end of the procedure range from 2`0 up to 2`max .

Figure 6 - (a) shows a barplot representation of the rK obtained. Figure
6 - (b) shows boxplots of the estimates obtained with the two replication
procedures: iterative (black boxplots) and classical (grey boxplots).
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Figure 6: (a) Distribution of the rK , K = 2, . . . , 9 for the estimation of first-order indices.
The black bar corresponds to K = q̃0.5. (b) (color online) Boxplots of first-order Sobol’
indices estimated r = 100 times with both the iterative replication procedure and the
classical one. The dotted horizontal lines refer to the true values of the indices. True
values of indices S5 and S6 are identical.

The two methods give overall similar results. Hence, there is no drawback
to render the replication procedure iterative for the estimation of the first-
order Sobol’ indices. Furthermore, Fig. 6-(a) shows that the number of
model evaluations can be decreased by adopting a sequential approach. One
can calculate the number of model evaluations saved in Algorithm 1. This
gain corresponds to the ratio of `max to the iteration at which the procedure
stopped. For this example the median gain equals 9/8 = 1.125 and the
maximum gain equals 9/7 = 1.29.

5.2.2. Estimation of closed second-order indices

The parameters of the stopping criterion are set as follows: ε = 3×10−3,
`0 = 3 and `max = 100. The initial orthogonal array A0 used to augment
designs P` and P ′` is constructed by setting q = 8. The size of designs P`
and P ′` at the final step of Algorithm 1 range from 3× 82 up to 100× 82.

Figure 7 shows barplots representation of the rK obtained when applying
the iterative replication procedure with either the algebraic method or the
accept-reject method. Results show that using the accept-reject method
allow saving more iterations but the discrepancy is very thin.

Figure 8 gives the boxplots representation of the estimates obtained with
the classical replication procedure (left boxplots) and with the iterative ver-
sion, using either the algebraic method (middle boxplots) or the accept-reject
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Figure 7: Distribution of the rK , K = 3, . . . , 100 when the iterative replication procedure
is applied with either (a) the algebraic method or (b) the accept-reject method. For each
graph, the black bar corresponds to K = q̃0.5.
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Figure 8: (color online) Boxplots of closed second-order Sobol’ indices estimated r = 100
times with the iterative replication procedure and the classical one. For each index Su,
the left boxplot refers to the classical procedure, the boxplot in the middle (resp. on the
right) refers to the iterative procedure using the algebraic (resp. accept-reject) method.
The horizontal dotted lines refer to the true values of the indices.

method (right boxplots). Only the estimates of closed second-order indices
higher than 0.1 are shown. The main observation is that the three methods
give overall similar results. Hence, the iterative replication procedure comes
at no loss.
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Table 1: Gain of the iterative replication procedure using either the algebraic or the
accept-reject construction, if it stops at step q̃α with α = 0.25, 0.5 or 0.75.

α construction q̃α gain= `max
q̃α

0.25
algebraic 76 1.32

accept-reject 76 1.32

0.5
algebraic 84 1.19

accept-reject 82 1.22

0.75
algebraic 91 1.10

accept-reject 88 1.14

As for the case of first-order indices, one can calculate the number of
model evaluations saved using the iterative replication procedure. Table 1
gives the gain at iterations q̃0.25, q̃0.5 and q̃0.75. Results show that the num-
ber of model evaluations can be further decreased by adopting a sequential
approach for the estimation of closed second-order indices. When the input
space dimension is small (d ≤ 4), the number of blocks is rather limited. As
such, the algebraic method should be preferred to the accept-reject one.

5.3. Engineering application

A simple crop model will be used in this section to illustrate the itera-
tive replication procedure. The crop model measures on a daily basis the
above-ground winter wheat dry matter since sowing. The dry matter is
calculated as a function of the cumulative daily temperature and the daily
photosynthetically active radiation (a detailed description of the equations
can be found in [22][Section 2.2]).

The quantity of interest (i.e., the output of the model) considered here is
the dry matter at harvest. This output is subject to sources of uncertainties
characterizing the daily climate and the ground. In the present study, the 8
input parameters listed in Table 2 are considered. The climate factor follows
a discrete uniform distribution. 14 sets of annual climate data were gathered.
The value of the climate factor allows to select one of the 14 climate data
sets at random. The parameters A and B hold no physical interpretations.
The iterative replication procedure using the algebraic method is applied
to estimate first-order and closed second-order Sobol’ indices of the height
input parameters.

For the first-order indices, The parameters of the stopping criterion (Eq.
(11)) are: ε = 0.05, `0 = 2 and `max = 12. The size of the two repli-
cated designs equals 8 at first and then are doubled at each iteration up
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Table 2: winter wheat dry matter model - inputs and associated distributions.
inputs distribution range of variation description

Eb uniform [0.9, 2.8] radiation use efficiency
Eimax uniform [0.9, 0.99] ratio max. of intercepted to incident radiation
K uniform [0.6, 0.8] coefficient of extinction

Lmax uniform [3, 12] maximal value of the leaf area index
A uniform [0.0035, 0.01] no physical interpretation
B uniform [0.0011, 0.0025] no physical interpretation
TI uniform [700, 1100] temperature treshold
C discrete uniform {1, . . . , 14} climate factor
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Figure 9: (color online) Values of the first-order Sobol’ indices estimated with the iterative
replication procedure, in function of the iterations.

to 215 = 32 768. Figure 9 shows values of the 8 first-order estimates along
the iterations. It can be observed that the iterative replication procedure
stopped at the 10-th iteration, which implies a cost of 2×4096 = 8192 model
evaluations. Eb is the most influential input trough its main effect, followed
by (in order): A, B, Lmax and Eimax. The remaining inputs, K and C have
negligible main effects (lower than 0.01).

As the sum of the first-order estimates equals 0.88 it is interesting to
estimate the closed second-order indices. To do so, the parameters of the
stopping criterion (Eq. (11)) are fixed as follows: ε = 5 × 10−3, `0 = 3
and `max = 100. The size of the two replicated designs equals 112 = 121 at
first and then, 121 points are added at each iteration up to 12 100 points.
By subtracting the first second-order estimates to the closed second-order
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Figure 10: (color online) Values of the five most influential unclosed second-order Sobol’
estimates obtained with the iterative replication procedure, in function of the iterations.

indices, a rough estimation of unclosed second-order indices can be obtained
(see Eq. (5)). Figure 9 shows values of the five most influential unclosed
second-order estimates along the iterations. These estimates correspond to
those whose values are higher than 0.01 at the end of the procedure.

It can be observed that the iterative replication procedure stopped at the
48-th iteration, which implies a cost of 2×5808 = 11 616 model evaluations.
Six of the height inputs are influential through second-order interactions,
namely: K,Lmax, A,B, TI , C. In particular, A is influential through three
different second-order interactions. The interaction effects of input A (along
with B and TI) have also been highlighted in [22] by means of the estimation
of total effect Sobol’ indices.

Overall, the main effects and second-order interactions captured with
the iterative replication procedure match well (qualitatively speaking) the
results of the study performed in [22].

6. Conclusion

The present paper proposed a new approach rendering the replication
procedure iterative to estimate first-order or closed second-order Sobol’ in-
dices. In parallel, an iterative formula for the Sobol’ index estimator was
introduced. The iterative procedure presented consists in augmenting the
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two replicated designs with new sets of points through the construction of
nested space-filling designs. For the case of closed second-order indices, two
methods were proposed to construct a randomized nested orthogonal ar-
ray of strength two: an algebraic method and an accept-reject method. The
iterative replication procedure was compared to the classical replication pro-
cedure of Tissot and Prieur [5]. The comparison focused on the space-filling
properties of the designs and on the precision of the Sobol’ indices estimates.

The replication procedure proposed in [5] are known to be highly efficient
in terms of number of simulations. Yet the results in this paper showed that
it is possible to further decrease the number of simulations by adopting an
iterative scheme. More precisely, the nested designs proposed here gave the
same order of precision on Sobol’ indices as the replicated designs used in
[5] but with a random number of simulations of much smaller expectation.
Furthermore, the space-filling properties of the nested designs constructed
were overall as good as the one of the replicated designs used in [5].

For the case of first-order indices, considering Sobol’ sequences could
improve the nested designs [20]. For the case of closed second-order indices,
the proposed methodology could be further improved by working on the set
C (Section 4.2, Algorithm 3). A more deterministic choice of the g ∈ C
could lead to a better exploration of the input space. A future perspective
would be to define a more refined stopping criterion than the current one.
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