. A. Ad, V. N. Berlin, and . Kislenko, Kinetic models of suspension flocculation by polymers, Colloids Surf. A: Physicochem . Eng. Asp, vol.104, pp.76-72, 1995.

G. J. Butler and G. S. Wolkowicz, A Mathematical Model of the Chemostat with a General Class of Functions Describing Nutrient Uptake, SIAM Journal on Applied Mathematics, vol.45, issue.1, pp.45-138, 1985.
DOI : 10.1137/0145006

J. Costerton, Overview of microbial biofilms, Journal of Industrial Microbiology, vol.46, issue.3, pp.137-140, 1995.
DOI : 10.1007/BF01569816

P. S. Crooke and R. D. Tanner, Hopf bifurcations for a variable yield continuous fermentation model, International Journal of Engineering Science, vol.20, issue.3, pp.439-443, 1982.
DOI : 10.1016/0020-7225(82)90050-7

P. S. Crooke, C. Wei, and R. D. Tanner, The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of a continuous fermentation model, Chem. Eng. Commun, pp.6-333, 1980.

P. De-leenheer, D. Angeli, and E. D. Sontag, Crowding effects promote coexistence in the chemostat, Journal of Mathematical Analysis and Applications, vol.319, issue.1, pp.319-367, 2006.
DOI : 10.1016/j.jmaa.2006.02.036

J. F. Drake, J. L. Jost, A. G. Fredrickson, and H. M. Tsuchiya, The food chain, pp.87-95, 1968.

C. K. Essajee and R. D. Tanner, The effect of extracellular variables on the stability of the continuous baker's yeast-ethanol fermentation process, Process Biochem, vol.14, pp.16-25, 1979.

R. Fekih-salem, Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat, 2013.

R. Fekih-salem, J. Harmand, C. Lobry, A. Rapaport, and T. Sari, Extensions of the chemostat model with flocculation, Journal of Mathematical Analysis and Applications, vol.397, issue.1, pp.292-306, 2013.
DOI : 10.1016/j.jmaa.2012.07.055

URL : https://hal.archives-ouvertes.fr/hal-00604633

A. C. Fowler, Starvation kinetics of oscillating microbial populations, Mathematical Proceedings of the Royal Irish Academy, vol.114, issue.2, pp.173-189, 2014.
DOI : 10.3318/pria.2014.114.09

R. Freter, H. Brickner, J. Fekete, M. M. Vickerman, and K. E. Carey, Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun, pp.39-686, 1983.

R. Freter, H. Brickner, and S. Temme, An understanding of colonization resistance of the mammalian large intestine requires mathematical analysis, Microecology and Therapy, vol.16, pp.147-155, 1986.

J. P. Grover, Resource competition, 1997.
DOI : 10.1007/978-1-4615-6397-6

B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, Journal of Biological Dynamics, vol.7, issue.1, pp.1-13, 2008.
DOI : 10.1016/S0043-1354(98)00392-3

URL : https://hal.archives-ouvertes.fr/hal-00857826

B. Haegeman, C. Lobry, and J. Harmand, Modeling bacteria flocculation as density-dependent growth, AIChE Journal, vol.66, issue.2, pp.535-539, 2007.
DOI : 10.1002/aic.11077

URL : https://hal.archives-ouvertes.fr/hal-01019312

S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes, Science, vol.207, issue.4438, pp.1491-1493, 1980.
DOI : 10.1126/science.6767274

G. Hardin, The Competitive Exclusion Principle, Science, vol.131, issue.3409, pp.1292-1297, 1960.
DOI : 10.1126/science.131.3409.1292

J. Harmand and J. J. Godon, Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors, Ecological Modelling, vol.200, issue.3-4, pp.200-393, 2007.
DOI : 10.1016/j.ecolmodel.2006.08.012

H. Harms and A. J. Zehnder, Influence of substrate diffusion on degradation of dibenzofuran and 3- chlorodibenzofuran by attached and suspended bacteria, Appl. Environ. Microbiol, pp.60-2736, 1994.

B. Heffernan, C. D. Murphy, and E. Casey, Comparison of Planktonic and Biofilm Cultures of Pseudomonas fluorescens DSM 8341 Cells Grown on Fluoroacetate, Applied and Environmental Microbiology, vol.75, issue.9, pp.75-2899, 2009.
DOI : 10.1128/AEM.01530-08

J. Heßeler, J. K. Schmidt, U. Reichl, and D. Flockerzi, Coexistence in the chemostat as a result of metabolic by-products, J. Math. Biol, pp.53-556, 2006.

S. B. Hsu, Limiting Behavior for Competing Species, SIAM Journal on Applied Mathematics, vol.34, issue.4, pp.760-763, 1978.
DOI : 10.1137/0134064

G. E. Hutchinson, The Paradox of the Plankton, The American Naturalist, vol.95, issue.882, pp.137-145, 1961.
DOI : 10.1086/282171

A. Isidori, Nonlinear Control Systems II, 1999.
DOI : 10.1007/978-1-4471-0549-7

D. Jones, H. V. Kojouharov, D. Le, and H. L. Smith, The Freter model: A simple model of biofilm formation, Journal of Mathematical Biology, vol.47, issue.2, pp.47-137, 2003.
DOI : 10.1007/s00285-003-0202-1

Z. Li, L. Chen, and Z. Liu, Periodic solution of a chemostat model with variable yield and impulsive state feedback control, Applied Mathematical Modelling, vol.36, issue.3, pp.1255-1266, 2012.
DOI : 10.1016/j.apm.2011.07.069

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of n species in the presence of a single resource, Comptes Rendus Biologies, vol.329, issue.1, pp.40-46, 2006.
DOI : 10.1016/j.crvi.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-01001131

C. Lobry, F. Mazenc, and A. Rapaport, Persistence in ecological models of competition for a single resource, Comptes Rendus Mathematique, vol.340, issue.3, pp.199-204, 2005.
DOI : 10.1016/j.crma.2004.12.021

URL : https://hal.archives-ouvertes.fr/hal-01001120

C. Lobry, A. Rapaport, and F. Mazenc, Sur un mod??le densit??-d??pendant de comp??tition pour une ressource, Comptes Rendus Biologies, vol.329, issue.2, pp.63-70, 2006.
DOI : 10.1016/j.crvi.2005.11.004

M. Mischaikow, H. Smith, and . Thieme, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Transactions of the American Mathematical Society, vol.347, issue.5, pp.1669-1685, 1995.
DOI : 10.1090/S0002-9947-1995-1290727-7

P. R. Patnaik, Dynamic sensitivity of a chemostat for a microbial reaction with substrate and product inhibition, Applied Mathematical Modelling, vol.18, issue.11, pp.620-627, 1994.
DOI : 10.1016/0307-904X(94)90320-4

S. Pilyugin and P. Waltman, The Simple Chemostat with Wall Growth, SIAM Journal on Applied Mathematics, vol.59, issue.5, pp.1552-1572, 1999.
DOI : 10.1137/S0036139997326181

T. Sari, A Lyapunov function for the chemostat with variable yields, Comptes Rendus Mathematique, vol.348, issue.13-14, pp.747-751, 2010.
DOI : 10.1016/j.crma.2010.06.008

URL : https://hal.archives-ouvertes.fr/inria-00505288

T. Sari, Competitive Exclusion for Chemostat Equations with Variable Yields, Acta Applicandae Mathematicae, vol.57, issue.1, pp.201-219, 2013.
DOI : 10.1007/s10440-012-9761-8

URL : https://hal.archives-ouvertes.fr/hal-00780065

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, vol.8, issue.3, pp.827-840, 2011.
DOI : 10.3934/mbe.2011.8.827

URL : https://hal.archives-ouvertes.fr/hal-00418676

M. Scheffer, S. Rinaldi, J. Huisman, and F. J. Weissing, Why plankton communities have no equilibrium: solutions to the paradox, Hydrobiologia, vol.491, issue.1-3, pp.9-18, 2003.
DOI : 10.1023/A:1024404804748

J. K. Schmidt, B. König, and U. , Characterization of a three bacteria mixed culture in a chemostat: Evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration, Biotechnology and Bioengineering, vol.71, issue.4, pp.96-738, 2007.
DOI : 10.1002/bit.21147

H. L. Smith and . Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, 1995.
DOI : 10.1017/CBO9780511530043

B. Tang, A. Sitomer, and T. Jackson, Population dynamics and competition in chemostat models with adaptive nutrient uptake, Journal of Mathematical Biology, vol.35, issue.4, pp.453-479, 1997.
DOI : 10.1007/s002850050061

D. N. Thomas, S. J. Judd, and N. Fawcett, Flocculation modelling: a review, Water Research, vol.33, issue.7, pp.1579-1592, 1999.
DOI : 10.1016/S0043-1354(98)00392-3

E. J. Wentland, P. S. Stewart, C. T. Huang, and G. A. Mcfeters, Spatial Variations in Growth Rate within Klebsiella pneumoniae Colonies and Biofilm, Biotechnology Progress, vol.12, issue.3, pp.12-316, 1996.
DOI : 10.1021/bp9600243

G. S. Wolkowicz and Z. Lu, Global Dynamics of a Mathematical Model of Competition in the Chemostat: General Response Functions and Differential Death Rates, SIAM Journal on Applied Mathematics, vol.52, issue.1, pp.52-222, 1992.
DOI : 10.1137/0152012

G. S. Wolkowicz and Z. Lu, Direct interference on competition in a chemostat, J. Biomath, vol.13, pp.282-291, 1998.

Z. Yang, H. Yang, Z. Jiang, X. Huang, H. Li et al., A new method for calculation of flocculation kinetics combining Smoluchowski model with fractal theory, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.423, pp.423-434, 2013.
DOI : 10.1016/j.colsurfa.2013.01.058

W. Yu, J. Gregory, L. Campos, and G. Li, The role of mixing conditions on floc growth, breakage and re-growth, Chemical Engineering Journal, vol.171, issue.2, pp.171-425, 2011.
DOI : 10.1016/j.cej.2011.03.098

L. Y. Zhang, Hopf bifurcation analysis in a Monod???Haldane predator???prey model with delays and diffusion, Applied Mathematical Modelling, vol.39, issue.3-4, pp.1369-1382, 2015.
DOI : 10.1016/j.apm.2014.09.007

X. Zhou, X. Song, and X. Shi, Analysis of competitive chemostat models with the Beddington???DeAngelis functional response and impulsive effect, Applied Mathematical Modelling, vol.31, issue.10, pp.31-2299, 2007.
DOI : 10.1016/j.apm.2006.08.010