M. P. Austin, Spatial prediction of species distribution: an interface between ecological theory and statistical modelling, Ecological Modelling, vol.157, issue.2-3, pp.101-118, 2002.
DOI : 10.1016/S0304-3800(02)00205-3

M. A. Beaumont, Approximate Bayesian Computation in Evolution and Ecology, Annual Review of Ecology, Evolution, and Systematics, vol.41, issue.1, pp.379-406, 2010.
DOI : 10.1146/annurev-ecolsys-102209-144621

L. M. Berliner, Likelihood and Bayesian Prediction of Chaotic Systems, Journal of the American Statistical Association, vol.20, issue.416, pp.938-952, 1991.
DOI : 10.1017/CBO9780511608773

G. E. Box, Science and Statistics, Journal of the American Statistical Association, vol.32, issue.213, pp.791-799, 1976.
DOI : 10.1017/S0021859600003592

C. M. Crespi and W. J. Boscardin, Bayesian model checking for multivariate outcome data, Computational Statistics & Data Analysis, vol.53, issue.11, pp.3765-3772, 2009.
DOI : 10.1016/j.csda.2009.03.024

K. Csilléry, abc: an R package for approximate Bayesian computation (ABC), Methods in Ecology and Evolution, vol.11, issue.3, pp.475-479, 2012.
DOI : 10.1111/j.2041-210X.2011.00179.x

D. Valpine, P. Hastings, and A. , FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR, Ecological Monographs, vol.72, issue.1, pp.57-76, 2002.
DOI : 10.1890/0012-9658(1998)079[2193:CPDITR]2.0.CO;2

M. R. Evans, Do simple models lead to generality in ecology?, Trends in Ecology & Evolution, vol.28, issue.10, pp.578-583, 2013.
DOI : 10.1016/j.tree.2013.05.022

A. Gelman, Two simple examples for understanding posterior p-values whose distributions are far from uniform. Elec, J. Stat, vol.7, pp.2595-2602, 2013.

A. Gelman, Posterior predictive assessment of model fitness via realized discrepancies, Stat. Sin, vol.6, pp.733-807, 1996.

V. Grimm and S. F. Railsback, Individual-based modeling and ecology, 2005.
DOI : 10.1515/9781400850624

V. Grimm, Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE, Ecological Modelling, vol.280, pp.129-139, 2014.
DOI : 10.1016/j.ecolmodel.2014.01.018

F. Hartig and C. F. Dormann, Does model-free forecasting really outperform the true model?, Proc. Natl. Acad. Sci. USA, pp.3975-3975, 2013.
DOI : 10.1073/pnas.1308603110

F. Hartig, Statistical inference for stochastic simulation models - theory and application, Ecology Letters, vol.119, issue.8, pp.816-827, 2011.
DOI : 10.1111/j.1461-0248.2011.01640.x

DOI : 10.1890/0012-9658(1998)079[2193:CPDITR]2.0.CO;2

F. Jabot and J. Chave, Analyzing Tropical Forest Tree Species Abundance Distributions Using a Nonneutral Model and through Approximate Bayesian Inference, The American Naturalist, vol.178, issue.2, pp.37-47, 2011.
DOI : 10.1086/660829

F. Jabot, EasyABC: performing efficient approximate Bayesian computation sampling schemes using R, Methods in Ecology and Evolution, vol.11, issue.7, pp.684-687, 2013.
DOI : 10.1111/2041-210X.12050

H. Kantz and T. Schreiber, Nonlinear time series analysis, 2004.
DOI : 10.1017/CBO9780511755798

J. Knape and P. De-valpine, Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance?, Ecology Letters, vol.13, issue.1, pp.17-23, 2012.
DOI : 10.1111/j.1461-0248.2011.01702.x

M. Lamboni, Multivariate global sensitivity analysis for dynamic crop models, Field Crops Research, vol.113, issue.3, pp.312-320, 2009.
DOI : 10.1016/j.fcr.2009.06.007

URL : https://hal.archives-ouvertes.fr/hal-01173193

R. M. May, Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos, Science, vol.186, issue.4164, pp.645-647, 1974.
DOI : 10.1126/science.186.4164.645

R. M. May, Complex systems: Ecology for bankers, Nature, vol.379, issue.7181, pp.893-895, 2008.
DOI : 10.1038/451893a

C. T. Perretti, Nonparametric forecasting outperforms parametric methods for a simulated multispecies system, Ecology, vol.94, issue.4, pp.794-800, 2013.
DOI : 10.1098/rspb.1999.0673

C. T. Perretti, Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data, Proc. Natl. Acad. Sci. USA, pp.5253-5257
DOI : 10.1073/pnas.1216076110

C. T. Perretti, Reply to Hartig and Dormann: The true model myth, Proc. Natl. Acad, 2013.
DOI : 10.1073/pnas.1312461110

V. F. Pisarenko and D. Sornette, Statistical methods of parameter estimation for deterministically chaotic time series, Physical Review E, vol.69, issue.3, p.36122, 2004.
DOI : 10.1103/PhysRevE.69.036122

M. Plummer, JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling, Proc. 3rd Inter. Workshop Distr, 2003.

J. M. Robins, Asymptotic distribution of p values in composite null models, J. Am. Stat. Ass, vol.95, pp.1143-1156, 2000.

D. B. Rubin, Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician, The Annals of Statistics, vol.12, issue.4, pp.1151-1172, 1984.
DOI : 10.1214/aos/1176346785

S. N. Wood, Statistical inference for noisy nonlinear ecological dynamic systems, Nature, vol.29, issue.7310, pp.1102-1104, 2010.
DOI : 10.1038/nature09319