B. Leporq, M. Vialette, E. Mettler, L. Perrier, D. Thuault et al., ANR-10-LABX-62-01), and Fondation le Roch Les Mousquetaires. The laboratory of A.L. is supported by Fondation pour la Recherche Médicale (FRM-AJE20131128944), Inserm ATIP-Avenir, Mairie de Paris (Programme Émergences ? Recherche médicale), and Investissements d'Avenir MemoLife (ANR-10-LABX-54). P.C. is a Senior International Research Scholar of the Howard Hughes Medical Institute. References 1 Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food, BACNET (ANR-10-BINF-0201) and IBEID, pp.179-86, 2005.

A. Grundling, L. Burrack, H. Bouwer, and D. Higgins, Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence, Proceedings of the National Academy of Sciences, vol.101, issue.33, pp.12318-12341, 2004.
DOI : 10.1073/pnas.0404924101

P. Cossart and C. Kocks, The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes, Molecular Microbiology, vol.60, issue.3
DOI : 10.1016/0092-8674(94)90367-0

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend et al., Comparative genomics of Listeria species, Science, vol.294, pp.849-52, 2001.

P. Cossart and C. Archambaud, The bacterial pathogen Listeria monocytogenes: an emerging model in prokaryotic transcriptomics, Journal of Biology, vol.8, issue.12, p.107, 2009.
DOI : 10.1186/jbiol202

C. Archambaud, M. Nahori, G. Soubigou, C. Bécavin, L. Laval et al., Impact of lactobacilli on orally acquired listeriosis, Proceedings of the National Academy of Sciences, vol.109, issue.41, pp.16684-16693, 2012.
DOI : 10.1073/pnas.1212809109

URL : https://hal.archives-ouvertes.fr/hal-01003361

T. Schultze, R. Hilker, G. Mannala, K. Gentil, M. Weigel et al., A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq, Frontiers in Microbiology, vol.197, issue.e108639, pp.1199-1208, 2015.
DOI : 10.1128/JB.02522-14

J. Boland, Regulation of Listeria virulence: PrfA master and commander, Curr Opin Microbiol, vol.14, pp.118-145, 2011.

E. Milohanic, P. Glaser, J. Coppée, L. Frangeul, Y. Vega et al., Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA, Molecular Microbiology, vol.171, issue.23, pp.1613-1638, 2003.
DOI : 10.1046/j.1365-2958.2003.03413.x

T. Schultze, B. Izar, X. Qing, G. Mannala, T. Hain et al., Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes, Front Cell Infect Microbiol Leimeister-Wächter M Proc Natl Acad Sci, vol.4, issue.87, pp.1358336-1358376, 1990.

J. Mengaud, S. Dramsi, E. Gouin, J. Vázquez-boland, G. Milon et al., virulence factors by a gene that is autoregulated, Molecular Microbiology, vol.30, issue.9, pp.2273-83, 1991.
DOI : 10.1111/j.1365-2958.1991.tb02158.x

H. Körner, H. Sofia, and W. Zumft, Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs, FEMS Microbiology Reviews, vol.27, issue.5, pp.559-92, 2003.
DOI : 10.1016/S0168-6445(03)00066-4

M. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, issue.8, pp.360-368, 2012.
DOI : 10.1016/j.tim.2012.04.006

J. Kreft and J. Vázquez-boland, Regulation of virulence genes in Listeria, International Journal of Medical Microbiology, vol.291, issue.2, pp.145-57, 2001.
DOI : 10.1078/1438-4221-00111

M. Leimeister-wächter, E. Domann, T. Chakraborty, J. Vázquez-boland, C. Kocks et al., Detection of a gene encoding a phosphatidylinositolspecific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread, Mol Microbiol Infect Immun, vol.5, issue.60, pp.361-6219, 1991.

C. Poyart, E. Abachin, I. Razafimanantsoa, and P. Berche, The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation, Infect Immun, vol.61, pp.1576-80, 1993.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-552, 1992.
DOI : 10.1016/0092-8674(92)90188-I

J. Ollinger, B. Bowen, M. Wiedmann, K. Boor, and T. Bergholz, Listeria monocytogenes ??B Modulates PrfA-Mediated Virulence Factor Expression, Infection and Immunity, vol.77, issue.5, pp.2113-2137, 2009.
DOI : 10.1128/IAI.01205-08

P. Mandin, H. Fsihi, O. Dussurget, M. Vergassola, E. Milohanic et al., virulence, Molecular Microbiology, vol.14, issue.5, pp.1367-80, 2005.
DOI : 10.1111/j.1365-2958.2005.04776.x

J. Kang, M. Wiedmann, K. Boor, and T. Bergholz, VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts, Applied and Environmental Microbiology, vol.81, issue.13, pp.4553-62, 2015.
DOI : 10.1128/AEM.00648-15

E. Abachin, C. Poyart, E. Pellegrini, E. Milohanic, F. Fiedler et al., Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes, Molecular Microbiology, vol.43, issue.1, pp.1-14, 2002.
DOI : 10.1016/0378-1119(85)90120-9

E. Michel, J. Mengaud, S. Galsworthy, and P. Cossart, and evidence that PrfA downregulates motility genes, FEMS Microbiology Letters, vol.169, issue.2, pp.341-348, 1998.
DOI : 10.1111/j.1574-6968.1998.tb13338.x

L. Shetron-rama, K. Mueller, J. Bravo, H. Bouwer, S. Way et al., Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products, Molecular Microbiology, vol.23, issue.6, pp.1537-51, 2003.
DOI : 10.1046/j.1365-2958.2003.03534.x

H. Bennett, D. Pearce, S. Glenn, C. Taylor, M. Kuhn et al., Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence, Molecular Microbiology, vol.21, issue.5, pp.1453-67, 2007.
DOI : 10.1128/JB.187.21.7243-7253.2005

L. Lobel, N. Sigal, I. Borovok, E. Ruppin, and A. Herskovits, Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence, PLoS Genetics, vol.8, issue.9, p.1002887, 2012.
DOI : 10.1371/journal.pgen.1002887.s010

L. Lobel and A. Herskovits, Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes, PLOS Genetics, vol.190, issue.4, p.1005870, 2016.
DOI : 10.1371/journal.pgen.1005870.s009

E. Loh, J. Gripenland, and J. Johansson, Control of Listeria monocytogenes virulence by 5???-untranslated RNA, Trends in Microbiology, vol.14, issue.7, pp.294-302, 2006.
DOI : 10.1016/j.tim.2006.05.001

A. Shen and D. Higgins, pathogenicity, Molecular Microbiology, vol.6, issue.5, pp.1460-73, 2005.
DOI : 10.1111/j.1365-2958.2005.04780.x

D. Balestrino, M. Hamon, L. Dortet, M. Nahori, J. Pizarro-cerda et al., Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study Listeria monocytogenes Infection Processes, Applied and Environmental Microbiology, vol.76, issue.11, pp.3625-3661, 2010.
DOI : 10.1128/AEM.02612-09

J. Stritzker, C. Schoen, and W. Goebel, Enhanced Synthesis of Internalin A in aro Mutants of Listeria monocytogenes Indicates Posttranscriptional Control of the inlAB mRNA, Journal of Bacteriology, vol.187, issue.8, pp.2836-2881, 2005.
DOI : 10.1128/JB.187.8.2836-2845.2005

H. Agaisse and D. Lereclus, STAB-SD: a Shine-Dalgarno sequence in the 5' untranslated region is a determinant of mRNA stability, Molecular Microbiology, vol.20, issue.3, pp.633-676, 1996.
DOI : 10.1046/j.1365-2958.1996.5401046.x

S. Köhler, A. Bubert, M. Vogel, and W. Goebel, Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level., Journal of Bacteriology, vol.173, issue.15, pp.4668-74, 1991.
DOI : 10.1128/jb.173.15.4668-4674.1991

K. Wong, H. Bouwer, and N. Freitag, in the regulation of bacterial actin-based motility, Cellular Microbiology, vol.19, issue.2, pp.155-66, 2004.
DOI : 10.1046/j.1462-5822.2003.00348.x

M. Mraheil, A. Billion, W. Mohamed, K. Mukherjee, C. Kuenne et al., The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages, Nucleic Acids Research, vol.39, issue.10, pp.4235-4283, 2011.
DOI : 10.1093/nar/gkr033

E. Loh, F. Memarpour, K. Vaitkevicius, B. Kallipolitis, J. Johansson et al., An unstructured 5'-coding region of the prfA mRNA is required for efficient translation, Nucleic Acids Research, vol.40, issue.4, pp.1818-27947, 1992.
DOI : 10.1093/nar/gkr850

J. Johansson, P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer et al., An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes, Cell, vol.110, issue.5, pp.551-61, 2002.
DOI : 10.1016/S0092-8674(02)00905-4

I. Iost, T. Bizebard, and M. Dreyfus, Functions of DEAD-box proteins in bacteria: Current knowledge and pending questions, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1829, issue.8, pp.866-77, 2013.
DOI : 10.1016/j.bbagrm.2013.01.012

URL : https://hal.archives-ouvertes.fr/hal-00825585

B. Schmid, J. Klumpp, E. Raimann, M. Loessner, R. Stephan et al., Role of Cold Shock Proteins in Growth of Listeria monocytogenes under Cold and Osmotic Stress Conditions, Applied and Environmental Microbiology, vol.75, issue.6, pp.1621-1628, 2009.
DOI : 10.1128/AEM.02154-08

C. Bäreclev, K. Vaitkevicius, S. Netterling, and J. Johansson, DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression, RNA biology, vol.11, pp.1458-67, 2014.

Y. Chan, S. Raengpradub, K. Boor, M. Wiedmann, A. Markkula et al., Microarray-Based Characterization of the Listeria monocytogenes Cold Regulon in Log- and Stationary-Phase Cells, Applied and Environmental Microbiology, vol.73, issue.20, pp.6484-98, 2007.
DOI : 10.1128/AEM.00897-07

S. Netterling, K. Vaitkevicius, S. Nord, and J. Johansson, A Listeria monocytogenes RNA Helicase Essential for Growth and Ribosomal Maturation at Low Temperatures Uses Its C Terminus for Appropriate Interaction with the Ribosome, Journal of Bacteriology, vol.194, issue.16, pp.4377-85, 2012.
DOI : 10.1128/JB.00348-12

S. Netterling, C. Bäreclev, K. Vaitkevicius, and J. Johansson, RNA Helicase Important for Listeria monocytogenes Hemolytic Activity and Virulence Factor Expression, Infection and Immunity, vol.84, issue.1, pp.67-76, 2016.
DOI : 10.1128/IAI.00849-15

J. Mellin, M. Koutero, D. Dar, M. Nahori, R. Sorek et al., Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA, Science, vol.345, issue.6199, pp.940-943, 2014.
DOI : 10.1126/science.1255083

URL : https://hal.archives-ouvertes.fr/pasteur-01120664

J. Quereda, A. Ortega, M. Pucciarelli, G. Portillo, and F. , The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a

A. Peselis and A. Serganov, Themes and variations in riboswitch structure and function, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1839, issue.10, pp.908-926, 2014.
DOI : 10.1016/j.bbagrm.2014.02.012

J. Mellin, T. Tiensuu, C. Bécavin, E. Gouin, J. Johansson et al., A riboswitch-regulated antisense RNA in Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.110, issue.32, pp.13132-13139, 2013.
DOI : 10.1073/pnas.1304795110

S. Debroy, M. Gebbie, R. A. Goodson, J. Cruz, M. Van-hoof et al., A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator, Science, vol.345, issue.6199, pp.937-977, 2014.
DOI : 10.1126/science.1255091

O. Tsoy, D. Ravcheev, and A. Mushegian, Comparative Genomics of Ethanolamine Utilization, Journal of Bacteriology, vol.191, issue.23, pp.7157-64, 2009.
DOI : 10.1128/JB.00838-09

D. Dar, M. Shamir, J. Mellin, M. Koutero, N. Stern-ginossar et al., Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria, Science, vol.352, issue.6282, pp.9822-9824, 2016.
DOI : 10.1126/science.aad9822

J. Mellin and P. Cossart, Unexpected versatility in bacterial riboswitches, Trends in Genetics, vol.31, issue.3, pp.150-156, 2015.
DOI : 10.1016/j.tig.2015.01.005

URL : https://hal.archives-ouvertes.fr/pasteur-01145383

S. Puttamreddy, M. Carruthers, M. Madsen, and F. Minion, Transcriptome Analysis of Organisms with Food Safety Relevance, Foodborne Pathogens and Disease, vol.5, issue.4, pp.517-546, 2008.
DOI : 10.1089/fpd.2008.0112

O. Wurtzel, N. Sesto, J. Mellin, I. Karunker, S. Edelheit et al., Comparative transcriptomics of pathogenic and nonpathogenic Listeria species, Mol Syst Biol, vol.8, p.583, 2012.

M. Thomason and G. Storz, Bacterial Antisense RNAs: How Many Are There, and What Are They Doing?, Annual Review of Genetics, vol.44, issue.1, pp.167-88, 2010.
DOI : 10.1146/annurev-genet-102209-163523

N. Sesto, O. Wurtzel, C. Archambaud, R. Sorek, and P. Cossart, The excludon: a new concept in bacterial antisense RNA-mediated gene regulation, Nature Reviews Microbiology, vol.6, issue.2, pp.75-82, 2013.
DOI : 10.1038/nrmicro2934

G. Oliva, T. Sahr, and C. Buchrieser, Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence, FEMS Microbiology Reviews, vol.39, issue.3, pp.331-380, 2015.
DOI : 10.1093/femsre/fuv022

URL : https://hal.archives-ouvertes.fr/pasteur-01226492

N. Sesto, M. Koutero, and P. Cossart, infection, Future Microbiology, vol.9, issue.9, pp.1025-1062, 2014.
DOI : 10.2217/fmb.14.79

URL : https://hal.archives-ouvertes.fr/pasteur-01161885

S. Gottesman and G. Storz, Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations, Cold Spring Harbor Perspectives in Biology, vol.3, issue.12, pp.3798-3806, 2011.
DOI : 10.1101/cshperspect.a003798

P. Mandin, F. Repoila, M. Vergassola, T. Geissmann, and P. Cossart, Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets, Nucleic Acids Research, vol.35, issue.3, pp.962-74, 2007.
DOI : 10.1093/nar/gkl1096

URL : https://hal.archives-ouvertes.fr/hal-00129258

L. Andersen and B. Kallipolitis, The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence, J Bacteriol, vol.186, pp.3355-62, 2004.

J. Christiansen, J. Nielsen, T. Ebersbach, P. Valentin-hansen, L. Søgaard-andersen et al., Identification of small Hfq-binding RNAs in Listeria monocytogenes, RNA, vol.12, issue.7, pp.1383-96, 2006.
DOI : 10.1261/rna.49706

J. Nielsen, L. Lei, T. Ebersbach, A. Olsen, J. Klitgaard et al., Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes, Nucleic Acids Research, vol.38, issue.3, pp.907-926, 2010.
DOI : 10.1093/nar/gkp1081

J. Nielsen, M. Larsen, E. Lillebaek, T. Bergholz, M. Christiansen et al., A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes, PLoS ONE, vol.36, issue.4, p.19019, 2011.
DOI : 10.1371/journal.pone.0019019.s004

S. Chaudhuri, J. Bruno, F. Alonzo, B. Xayarath, N. Cianciotto et al., Contribution of Chitinases to Listeria monocytogenes Pathogenesis, Applied and Environmental Microbiology, vol.76, issue.21, pp.7302-7307, 2010.
DOI : 10.1128/AEM.01338-10

T. Burke and D. Portnoy, SpoVG is a conserved RNA-binding protein that regulates Listeria monocytogenes lysozyme resistance, virulence, and swarming motility, MBio, vol.7, pp.240-256, 2016.

E. Loh, O. Dussurget, J. Gripenland, K. Vaitkevicius, T. Tiensuu et al., A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes, Cell, vol.139, issue.4, pp.770-779, 2009.
DOI : 10.1016/j.cell.2009.08.046

P. Horvath, R. Barrangou, . Crispr, and . Cas, CRISPR/Cas, the Immune System of Bacteria and Archaea, Science, vol.327, issue.5962, pp.167-70, 2010.
DOI : 10.1126/science.1179555

N. Sesto, M. Touchon, J. Andrade, J. Kondo, E. Rocha et al., A PNPase Dependent CRISPR System in Listeria, PLoS Genetics, vol.8, issue.1, p.1004065, 2014.
DOI : 10.1371/journal.pgen.1004065.s013

URL : https://hal.archives-ouvertes.fr/pasteur-01145428

J. Bruno and N. Freitag, Constitutive Activation of PrfA Tilts the Balance of Listeria monocytogenes Fitness Towards Life within the Host versus Environmental Survival, PLoS ONE, vol.69, issue.Pt 10, p.15138, 2010.
DOI : 10.1371/journal.pone.0015138.s003

T. Hain, R. Ghai, A. Billion, C. Kuenne, C. Steinweg et al., Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes, BMC Genomics, vol.13, issue.1, p.144, 2012.
DOI : 10.1093/bioinformatics/btl466

URL : https://hal.archives-ouvertes.fr/pasteur-00724699

C. Marbaniang and J. Vogel, Emerging roles of RNA modifications in bacteria, Current Opinion in Microbiology, vol.30, pp.50-57, 2016.
DOI : 10.1016/j.mib.2016.01.001

Z. Abdullah, M. Schlee, S. Roth, M. Mraheil, W. Barchet et al., by sensing secreted bacterial nucleic acids, The EMBO Journal, vol.9, issue.21, pp.4153-64, 2012.
DOI : 10.1038/emboj.2012.274

C. Hagmann, A. Herzner, Z. Abdullah, T. Zillinger, C. Jakobs et al., RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells, PLoS ONE, vol.200, issue.4, p.62872, 2013.
DOI : 10.1371/journal.pone.0062872.s004