D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

G. Kroemer and J. Pouyssegur, Tumor Cell Metabolism: Cancer's Achilles' Heel, Cancer Cell, vol.13, issue.6, pp.472-482, 2008.
DOI : 10.1016/j.ccr.2008.05.005

URL : http://doi.org/10.1016/j.ccr.2008.05.005

D. R. Green, L. Galluzzi, and G. Kroemer, Metabolic control of cell death, Science, vol.345, issue.6203, p.1250256, 2014.
DOI : 10.1126/science.1250256

P. Bénit, Unsuspected task for an old team: Succinate, fumarate and other Krebs cycle acids in metabolic remodeling, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1837, issue.8, pp.1330-1337, 2014.
DOI : 10.1016/j.bbabio.2014.03.013

V. R. Fantin, M. J. Berardi, L. Scorrano, S. J. Korsmeyer, and P. Leder, A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth, Cancer Cell, vol.2, issue.1, pp.29-42, 2002.
DOI : 10.1016/S1535-6108(02)00082-X

B. G. Heerdt, M. A. Houston, and L. H. Augenlicht, Growth Properties of Colonic Tumor Cells Are a Function of the Intrinsic Mitochondrial Membrane Potential, Cancer Research, vol.66, issue.3, pp.1591-1596, 2006.
DOI : 10.1158/0008-5472.CAN-05-2717

S. M. Schieke, Mitochondrial Metabolism Modulates Differentiation and Teratoma Formation Capacity in Mouse Embryonic Stem Cells, Journal of Biological Chemistry, vol.283, issue.42, pp.28506-28512, 2008.
DOI : 10.1074/jbc.M802763200

L. Sánchez-cenizo, Up-regulation of the ATPase Inhibitory Factor 1 (IF1) of the Mitochondrial H+-ATP Synthase in Human Tumors Mediates the Metabolic Shift of Cancer Cells to a Warburg Phenotype, Journal of Biological Chemistry, vol.285, issue.33, pp.25308-25313, 2010.
DOI : 10.1074/jbc.M110.146480

D. M. Tappenden, The aryl hydrocarbon receptor interacts with ATP5??1, a subunit of the ATP synthase complex, and modulates mitochondrial function, Toxicology and Applied Pharmacology, vol.254, issue.3, pp.299-310, 2011.
DOI : 10.1016/j.taap.2011.05.004

T. M. Hernandez-boussard and P. Hainaut, A specific spectrum of p53 mutations in lung cancer from smokers: review of mutations compiled in the IARC p53 database, Environmental Health Perspectives, vol.106, issue.7, pp.385-391, 1998.
DOI : 10.1289/ehp.98106385

K. W. Bock and C. Köhle, Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis, Biochemical Pharmacology, vol.69, issue.10, pp.1403-1408, 2005.
DOI : 10.1016/j.bcp.2005.02.004

Q. Ba, Effects of Benzo[a]pyrene Exposure on Human Hepatocellular Carcinoma Cell Angiogenesis, Metastasis, and NF-??B Signaling, Environmental Health Perspectives, vol.123, pp.246-254, 2015.
DOI : 10.1289/ehp.1408524

J. M. Hillegass, K. A. Murphy, C. M. Villano, and L. A. White, The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease, Biological Chemistry, vol.387, issue.9, pp.1159-1173, 2006.
DOI : 10.1515/BC.2006.144

X. Tekpli, Membrane remodeling, an early event in benzo[??]pyrene-induced apoptosis, Toxicology and Applied Pharmacology, vol.243, issue.1, pp.68-76, 2010.
DOI : 10.1016/j.taap.2009.11.014

URL : https://hal.archives-ouvertes.fr/hal-00729575

L. Huc, c-Jun NH2-Terminal Kinase-Related Na+/H+ Exchanger Isoform 1 Activation Controls Hexokinase II Expression in Benzo(a)Pyrene-Induced Apoptosis, Cancer Research, vol.67, issue.4, pp.1696-1705, 2007.
DOI : 10.1158/0008-5472.CAN-06-2327

URL : https://hal.archives-ouvertes.fr/hal-00690320

B. Dendelé, Identification of the couple GSK3??/c-Myc as a new regulator of hexokinase II in benzo[a]pyrene-induced apoptosis, Toxicology in Vitro, vol.26, issue.1, pp.94-101, 2012.
DOI : 10.1016/j.tiv.2011.11.001

S. Kotliarova, Glycogen Synthase Kinase-3 Inhibition Induces Glioma Cell Death through c-MYC, Nuclear Factor-??B, and Glucose Regulation, Cancer Research, vol.68, issue.16, pp.6643-6651, 2008.
DOI : 10.1158/0008-5472.CAN-08-0850

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585745

T. Soga, Cancer metabolism: Key players in metabolic reprogramming, Cancer Science, vol.10, issue.3, pp.275-281, 2013.
DOI : 10.1111/cas.12085

S. J. Reshkin, Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes, The FASEB Journal, vol.14, issue.14, pp.2185-2197, 2000.
DOI : 10.1096/fj.00-0029com

L. Huc, )pyrene in Liver Epithelial Cells, Annals of the New York Academy of Sciences, vol.44, issue.suppl. 1, pp.167-170, 2003.
DOI : 10.1196/annals.1299.028

K. Hardonnière, Benzo[a]pyrene-induced nitric oxide production acts as a survival signal targeting mitochondrial membrane potential, Toxicology in Vitro, vol.29, issue.7, pp.1597-1608, 2015.
DOI : 10.1016/j.tiv.2015.06.010

J. A. Holme, Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells, Chemico-Biological Interactions, vol.167, issue.1, pp.41-55, 2007.
DOI : 10.1016/j.cbi.2007.01.008

URL : https://hal.archives-ouvertes.fr/hal-00690306

L. Huc, Identification of Na+/H+ exchange as a new target for toxic polycyclic aromatic hydrocarbons in liver cells, The FASEB Journal, vol.18, pp.344-346, 2004.
DOI : 10.1096/fj.03-0316fje

B. P. Dranka, Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic, Biol. Med, vol.51, pp.1621-1635, 2011.

A. Lemarie, Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction, Cell Death and Differentiation, vol.80, issue.2, pp.338-349, 2011.
DOI : 10.1038/nprot.2006.238

URL : https://hal.archives-ouvertes.fr/hal-00565452

T. Y. Doktorova, Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models, Carcinogenesis, vol.34, issue.6, pp.1393-1402, 2013.
DOI : 10.1093/carcin/bgt054

M. S. Hwang, Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction, Cell Death and Differentiation, vol.810, issue.11, pp.1733-1745, 2014.
DOI : 10.1126/science.1175689

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211371

L. Huc, Multiple apoptotic pathways induced by p53-dependent acidification in benzo[a]pyrene-exposed hepatic F258 cells, Journal of Cellular Physiology, vol.2, issue.3, pp.527-537, 2006.
DOI : 10.1002/jcp.20686

URL : https://hal.archives-ouvertes.fr/inserm-00130324

A. J. Lambert and M. D. Brand, Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane, Biochemical Journal, vol.382, issue.2, pp.511-517, 2004.
DOI : 10.1042/BJ20040485

T. Albayrak, The Tumor Suppressor cybL, a Component of the Respiratory Chain, Mediates Apoptosis Induction, Molecular Biology of the Cell, vol.14, issue.8, pp.3082-3096, 2003.
DOI : 10.1091/mbc.E02-10-0631

A. P. Wojtovich, C. O. Smith, C. M. Haynes, K. W. Nehrke, and P. S. Brookes, Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.5, pp.598-611, 2013.
DOI : 10.1016/j.bbabio.2012.12.007

M. L. Fidelman, S. H. Seeholzer, K. B. Walsh, and R. D. Moore, Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle, Am. J. Physiol, vol.242, pp.87-93, 1982.

M. Peak, M. Habori, and L. Agius, Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin, Biochemical Journal, vol.282, issue.3, pp.797-805, 1992.
DOI : 10.1042/bj2820797

L. D. Marroquin, J. Hynes, J. A. Dykens, J. D. Jamieson, and Y. Will, Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants, Toxicological Sciences, vol.97, issue.2, pp.539-547, 2007.
DOI : 10.1093/toxsci/kfm052

K. Weber, D. Ridderskamp, M. Alfert, S. Hoyer, and R. J. Wiesner, Cultivation in Glucose-Deprived Medium Stimulates Mitochondrial Biogenesis and Oxidative Metabolism in HepG2 Hepatoma Cells, Biological Chemistry, vol.383, issue.2, pp.283-290, 2002.
DOI : 10.1515/BC.2002.030

L. Li and W. Li, 30776 | DOI: 10.1038/srep30776 36 Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation, Scientific RepoRts | Pharmacol. Ther, vol.6, issue.150, pp.33-46, 2015.

L. Huc, A. Lemarié, F. Guéraud, and C. Héliès-toussaint, Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells, Toxicology in Vitro, vol.26, issue.5, pp.709-717, 2012.
DOI : 10.1016/j.tiv.2012.03.017

P. Rády, I. Arany, F. Boján, and P. Kertai, Effect of carcinogenic and non-carcinogenic chemicals on the activities of four glycolytic enzymes in mouse lung, Chemico-Biological Interactions, vol.31, issue.2, pp.209-213, 1980.
DOI : 10.1016/0009-2797(80)90007-1

L. A. Hooven and W. M. Baird, Proteomic analysis of MCF-7 cells treated with benzo[a]pyrene, dibenzo[a,l]pyrene, coal tar extract, and diesel exhaust extract, Toxicology, vol.249, issue.1, pp.1-10, 2008.
DOI : 10.1016/j.tox.2008.03.019

I. Salazar, Alterations of rat liver mitochondrial oxidative phosphorylation and calcium uptake by benzo[a]pyrene, Toxicology and Applied Pharmacology, vol.198, issue.1, pp.1-10, 2004.
DOI : 10.1016/j.taap.2004.02.013

R. B. Robey, Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?, Carcinogenesis, vol.36, issue.Suppl 1, pp.203-231, 2015.
DOI : 10.1093/carcin/bgv037

S. Kalkhof, ]pyrene Toxicity on Hepa1c1c7 Cells at Toxic and Subtoxic Exposure, Journal of Proteome Research, vol.14, issue.1, pp.164-182, 2015.
DOI : 10.1021/pr500957t

K. O. Alfarouk, Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question, Erratum in: Oncoscience, pp.777-802, 2014.

F. Mraiche, C. S. Wagg, G. D. Lopaschuk, and L. Fliegel, Elevated levels of activated NHE1 protect the myocardium and improve metabolism following ischemia/reperfusion injury, Journal of Molecular and Cellular Cardiology, vol.50, issue.1, pp.157-164, 2011.
DOI : 10.1016/j.yjmcc.2010.10.016

X. Tekpli, NHE-1 Relocation Outside Cholesterol-rich Membrane Microdomains is Associated with its Benzo[a]pyrene-related Apoptotic Function, Cellular Physiology and Biochemistry, vol.29, issue.5-6, pp.657-666, 2012.
DOI : 10.1159/000171027

URL : https://hal.archives-ouvertes.fr/inserm-00871487

S. Sato, Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver, Toxicology and Applied Pharmacology, vol.229, issue.1, pp.10-19, 2008.
DOI : 10.1016/j.taap.2007.12.029

J. P. Bolaños, A. Almeida, and S. Moncada, Glycolysis: a bioenergetic or a survival pathway?, Trends in Biochemical Sciences, vol.35, issue.3, pp.145-149, 2010.
DOI : 10.1016/j.tibs.2009.10.006

M. Gorria, Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport, Biochemical Pharmacology, vol.72, issue.10, pp.1343-1353, 2006.
DOI : 10.1016/j.bcp.2006.07.014

URL : https://hal.archives-ouvertes.fr/hal-00699820

M. A. Selak, Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-?? prolyl hydroxylase, Cancer Cell, vol.7, issue.1, pp.77-85, 2005.
DOI : 10.1016/j.ccr.2004.11.022

URL : http://doi.org/10.1016/j.ccr.2004.11.022

S. K. Parks, J. Chiche, and J. Pouysségur, Disrupting proton dynamics and energy metabolism for cancer therapy, Nature Reviews Cancer, vol.3, issue.9, pp.611-623, 2013.
DOI : 10.1038/nrc3579

S. Dröse, Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.5, pp.578-587, 2013.
DOI : 10.1016/j.bbabio.2013.01.004

L. Jiang, Metabolic reprogramming during TGF??1-induced epithelial-to-mesenchymal transition, Oncogene, vol.63, issue.30, pp.3908-3916, 2015.
DOI : 10.1074/jbc.M704165200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387121