N. Agrawal, R. Delanoue, A. Mauri, D. Basco, M. Pasco et al., The Drosophila TNF Eiger Is an Adipokine that Acts on Insulin-Producing Cells to Mediate Nutrient Response, Cell Metabolism, vol.23, issue.4, pp.675-684, 2016.
DOI : 10.1016/j.cmet.2016.03.003

N. Bahary, R. L. Leibel, L. Joseph, and J. M. Friedman, Molecular mapping of the mouse db mutation., Proc. Natl. Acad. Sci. USA, pp.8642-8646, 1990.
DOI : 10.1073/pnas.87.21.8642

H. Bai, P. Kang, and M. Tatar, ) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain, Aging Cell, vol.21, issue.6, pp.978-985, 2012.
DOI : 10.1093/emboj/cdf600

F. G. Banting and C. H. Best, 4. The Internal Secretion of the Pancreas, 2007.
DOI : 10.3138/9781442656918-008

J. R. Brent, K. M. Werner, and B. D. Mccabe, Drosophila Larval NMJ Dissection, Journal of Visualized Experiments, issue.24, p.1107, 2009.
DOI : 10.3791/1107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762896

J. S. Britton, E. , and B. A. , Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms, Development, vol.125, pp.2149-2158, 1998.

W. Brogiolo, H. Stocker, T. Ikeya, F. Rintelen, R. Fernandez et al., An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control, Current Biology, vol.11, issue.4, pp.213-221, 2001.
DOI : 10.1016/S0960-9822(01)00068-9

S. Broughton, N. Alic, C. Slack, T. Bass, T. Ikeya et al., Reduction of DILP2 in Drosophila Triages a Metabolic Phenotype from Lifespan Revealing Redundancy and Compensation among DILPs, PLoS ONE, vol.12, issue.6, p.3721, 2008.
DOI : 10.1371/journal.pone.0003721.s001

D. Chatterjee, S. D. Katewa, Y. Qi, S. A. Jackson, P. Kapahi et al., Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes, Proc. Natl. Acad. Sci. USA, pp.17959-17964, 2014.

Q. Cheng, V. Diez-beltran, S. M. Chan, J. R. Brown, A. Bevington et al., System-L amino acid transporters play a key role in pancreatic ??-cell signalling and function, Journal of Molecular Endocrinology, vol.56, issue.3, pp.175-187, 2016.
DOI : 10.1530/JME-15-0212

J. Colombani, D. S. Andersen, and P. Lé-opold, Secreted Peptide Dilp8 Coordinates Drosophila Tissue Growth with Developmental Timing, Science, vol.133, issue.22, pp.582-585, 2012.
DOI : 10.1242/dev.02618

URL : https://hal.archives-ouvertes.fr/hal-00766336

S. J. Cook, M. , and S. J. , ground, Biochemical Journal, vol.403, issue.1, pp.1-3, 2007.
DOI : 10.1042/BJ20070207

URL : https://hal.archives-ouvertes.fr/in2p3-00465032

M. P. Czech, Molecular Actions of Insulin on Glucose Transport, Annual Review of Nutrition, vol.15, issue.1, pp.441-471, 1995.
DOI : 10.1146/annurev.nu.15.070195.002301

R. V. Durá-n, W. Oppliger, A. M. Robitaille, L. Heiserich, R. Skendaj et al., Glutaminolysis activates Rag-mTORC1 signaling, 2012.

M. Fraenkel, M. Ketzinel-gilad, Y. Ariav, O. Pappo, M. Karaca et al., mTOR Inhibition by Rapamycin Prevents ??-Cell Adaptation to Hyperglycemia and Exacerbates the Metabolic State in Type 2 Diabetes, Diabetes, vol.57, issue.4, pp.945-957, 2008.
DOI : 10.2337/db07-0922

Z. Fu, E. R. Gilbert, and D. Liu, Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes, Curr. Diabetes Rev, vol.9, pp.25-53, 2013.

Z. Gao, R. A. Young, G. Li, H. Najafi, C. Buettger et al., Distinguishing Features of Leucine and ??-Ketoisocaproate Sensing in Pancreatic ??-Cells, Endocrinology, vol.144, issue.5, pp.1949-1957, 2003.
DOI : 10.1210/en.2002-0072

A. Garelli, F. Heredia, A. P. Casimiro, A. Macedo, C. Nunes et al., Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing, Nat. Commun, vol.6, issue.8732, 2015.

C. Gé-minard, E. J. Rulifson, and P. Lé-opold, Remote Control of Insulin Secretion by Fat Cells in Drosophila, Cell Metabolism, vol.10, issue.3, pp.199-207, 2009.
DOI : 10.1016/j.cmet.2009.08.002

S. M. Ghosh, N. D. Testa, and A. W. Shingleton, Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster, Proceedings of the Royal Society B: Biological Sciences, vol.95, issue.47, 2013.
DOI : 10.1073/pnas.1210460109

I. Gö-hring and H. Mulder, Glutamate dehydrogenase, insulin secretion , and type 2 diabetes: a new means to protect the pancreatic b-cell?, 2012.

S. Grö-nke, D. F. Clarke, S. Broughton, T. D. Andrews, and L. Partridge, Molecular evolution and functional characterization of Drosophila insulin-like peptides, PLoS Genet, vol.6, 2010.

R. C. Hudson, D. , and R. M. , l-glutamate dehydrogenases: Distribution, properties and mechanism, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.106, issue.4, pp.767-792, 1993.
DOI : 10.1016/0305-0491(93)90031-Y

T. Ikeya, M. Galic, P. Belawat, K. Nairz, and E. Hafen, Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila, Current Biology, vol.12, issue.15, pp.1293-1300, 2002.
DOI : 10.1016/S0960-9822(02)01043-6

Y. Kanai, H. Segawa, K. Miyamoto, H. Uchino, E. Takeda et al., Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98), Journal of Biological Chemistry, vol.56, issue.37, 1998.
DOI : 10.1007/s004240050403

D. H. Kim, D. D. Sarbassov, S. M. Ali, J. E. King, R. R. Latek et al., mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery, Cell, vol.110, issue.2, pp.163-175, 2002.
DOI : 10.1016/S0092-8674(02)00808-5

E. Kim, P. Goraksha-hicks, L. Li, T. P. Neufeld, and K. L. Guan, Regulation of TORC1 by Rag GTPases in nutrient response, Nature Cell Biology, vol.3, issue.8, pp.935-945, 2008.
DOI : 10.1083/jcb.200511140

M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo et al., Ghrelin is a growth-hormone-releasing acylated peptide from stomach, Nature, vol.402, issue.6762, pp.656-660, 1999.
DOI : 10.1038/45230

T. Kono, Actions of Insulin on Glucose Transport and cAMP Phosphodiesterase in Fat Cells: Involvement of Two Distinct Molecular Mechanisms, Recent Prog. Horm. Res, vol.39, pp.519-557, 1983.
DOI : 10.1016/B978-0-12-571139-5.50017-3

T. Koyama and C. K. Mirth, Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation, PLOS Biology, vol.17, issue.6, p.1002392, 2016.
DOI : 10.1371/journal.pbio.1002392.s009

URL : http://doi.org/10.1371/journal.pbio.1002392

K. S. Lee, O. Y. Kwon, J. H. Lee, K. Kwon, K. J. Min et al., Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling, Nature Cell Biology, vol.127, issue.4, pp.468-475, 2008.
DOI : 10.1126/science.6289436

H. Luan, W. C. Lemon, N. C. Peabody, J. B. Pohl, P. K. Zelensky et al., Functional Dissection of a Neuronal Network Required for Cuticle Tanning and Wing Expansion in Drosophila, Journal of Neuroscience, vol.26, issue.2, pp.573-584, 2006.
DOI : 10.1523/JNEUROSCI.3916-05.2006

C. J. Lynch, Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies, J. Nutr, vol.131, pp.861-865, 2001.

C. J. Lynch, H. L. Fox, T. C. Vary, L. S. Jefferson, K. et al., Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes, Journal of Cellular Biochemistry, vol.6, issue.2, pp.234-251, 2000.
DOI : 10.1042/bj3340261

G. T. Macleod, M. Hegströ-m-wojtowicz, M. P. Charlton, and H. L. Atwood, Fast Calcium Signals in Drosophila Motor Neuron Terminals, Journal of Neurophysiology, vol.88, issue.5, pp.2659-2663, 2002.
DOI : 10.1152/jn.00515.2002

URL : http://jn.physiology.org/content/jn/88/5/2659.full.pdf

J. F. Martin, E. Hersperger, A. Simcox, and A. Shearn, minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation, Mechanisms of Development, vol.92, issue.2, pp.155-167, 2000.
DOI : 10.1016/S0925-4773(99)00338-X

URL : http://doi.org/10.1016/s0925-4773(99)00338-x

T. Miyamoto, J. Slone, X. Song, and H. Amrein, A Fructose Receptor Functions as a Nutrient Sensor in the Drosophila Brain, Cell, vol.151, issue.5, pp.1113-1125, 2012.
DOI : 10.1016/j.cell.2012.10.024

P. Newsholme, L. Brennan, B. Rubi, and P. Maechler, New insights into amino acid metabolism, ??-cell function and diabetes, Clinical Science, vol.108, issue.3, pp.185-194, 2005.
DOI : 10.1042/CS20040290

D. Padmanabha and K. D. Baker, Drosophila gains traction as a repurposed tool to investigate metabolism, Trends in Endocrinology & Metabolism, vol.25, issue.10, pp.518-527, 2014.
DOI : 10.1016/j.tem.2014.03.011

P. Petit, L. Res-mariani, and M. M. , Potassium channels of the insulin-secreting B cell, Fundamental & Clinical Pharmacology, vol.337, issue.suppl II, pp.123-134, 1992.
DOI : 10.1111/j.1476-5381.1988.tb16551.x

M. Pineda, E. Ferná-ndez, D. Torrents, R. Esté-vez, C. Ló-pez et al., Identification of a Membrane Protein, LAT-2, That Co-expresses with 4F2 Heavy Chain, an L-type Amino Acid Transport Activity with Broad Specificity for Small and Large Zwitterionic Amino Acids, Journal of Biological Chemistry, vol.46, issue.28, 1999.
DOI : 10.1136/gut.35.1_Suppl.S13

A. Rajan and N. Perrimon, Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion, Cell, vol.151, issue.1, pp.123-137, 2012.
DOI : 10.1016/j.cell.2012.08.019

URL : http://doi.org/10.1016/j.cell.2013.02.009

G. R. Ren, F. Hauser, K. F. Rewitz, S. Kondo, A. F. Engelbrecht et al., CCHa- mide-2 is an orexigenic brain-gut peptide in Drosophila, PLoS ONE, vol.10, 2015.
DOI : 10.1371/journal.pone.0133017

URL : http://doi.org/10.1371/journal.pone.0133017

B. Reynolds, P. Roversi, R. Laynes, S. Kazi, C. A. Boyd et al., expresses a CD98 transporter with an evolutionarily conserved structure and amino acid-transport properties, Biochemical Journal, vol.173, issue.3, pp.363-372, 2009.
DOI : 10.1002/prot.20842

URL : http://www.biochemj.org/content/ppbiochemj/420/3/363.full.pdf

E. J. Rulifson, S. K. Kim, and R. Nusse, Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes, Science, vol.296, issue.5570, pp.1118-1120, 2002.
DOI : 10.1126/science.1070058

Y. Sancak, T. R. Peterson, Y. D. Shaul, R. A. Lindquist, C. C. Thoreen et al., The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1, Science, vol.344, issue.3, pp.1496-1501, 2008.
DOI : 10.1016/j.bbrc.2006.03.220

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475333

Y. Sancak, L. Bar-peled, R. Zoncu, A. L. Markhard, S. Nada et al., Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids, Cell, vol.141, issue.2, pp.290-303, 2010.
DOI : 10.1016/j.cell.2010.02.024

H. Sano, A. Nakamura, M. J. Texada, J. W. Truman, H. Ishimoto et al., The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster, PLoS Genet, issue.11, 2015.

A. Sener and W. J. Malaisse, L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase, Nature, vol.73, issue.5787, pp.187-189, 1980.
DOI : 10.1042/bj1340209

A. Sener, G. Somers, G. Devis, and W. J. Malaisse, The stimulussecretion coupling of amino acid-induced insulin release. Biosynthetic and secretory responses of rat pancreatic islet to L-leucine and L-glutamine, Diabetologia, vol.21, pp.135-142, 1981.

J. M. Tennessen, W. E. Barry, J. Cox, and C. S. Thummel, Methods for studying metabolism in Drosophila, Methods, vol.68, issue.1, pp.105-115, 2014.
DOI : 10.1016/j.ymeth.2014.02.034

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe et al., Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators, Nature Methods, vol.10, issue.12, pp.875-881, 2009.
DOI : 10.3389/neuro.04.003.2007

L. J. Van-loon, M. Kruijshoop, P. P. Menheere, A. J. Wagenmakers, W. H. Saris et al., Amino Acid Ingestion Strongly Enhances Insulin Secretion in Patients With Long-Term Type 2 Diabetes, Diabetes Care, vol.26, issue.3, pp.625-630, 2003.
DOI : 10.2337/diacare.26.3.625

G. R. Wyatt and G. F. Kale, THE CHEMISTRY OF INSECT HEMOLYMPH: II. TREHALOSE AND OTHER CARBOHYDRATES, The Journal of General Physiology, vol.40, issue.6, pp.833-847, 1957.
DOI : 10.1085/jgp.40.6.833

T. Zhang, L. , and C. , Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism, Acta Biochimica et Biophysica Sinica, vol.45, issue.1, pp.36-43, 2013.
DOI : 10.1093/abbs/gms107

X. Zhou and J. R. Thompson, Regulation of glutamate dehydrogenase by branched-chain amino acids in skeletal muscle from rats and chicks, The International Journal of Biochemistry & Cell Biology, vol.28, issue.7, pp.787-793, 1996.
DOI : 10.1016/1357-2725(96)00019-2