P. V. Harris, Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family, Biochemistry, vol.49, issue.15, pp.3305-3316, 2010.
DOI : 10.1021/bi100009p

G. Vaaje-kolstad, An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides, Science, vol.26, issue.5, pp.219-222, 2010.
DOI : 10.1016/j.tibtech.2008.02.004

K. S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-oxygenases, Biochemical Society Transactions, vol.44, issue.1, pp.143-149, 2016.
DOI : 10.1042/BST20150204

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, vol.42, issue.D1, pp.490-495, 2014.
DOI : 10.1093/nar/gkt1178

R. J. Quinlan, Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proc. Natl. Acad. Sci. USA, pp.15079-84, 2011.
DOI : 10.1107/S0907444904019158

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnology for Biofuels, vol.6, issue.1, p.41, 2013.
DOI : 10.1186/1471-2148-12-186

URL : https://hal.archives-ouvertes.fr/hal-01268121

E. Espagne, The genome sequence of the model ascomycete fungus Podospora anserina, Genome Biology, vol.9, issue.5, p.77, 2008.
DOI : 10.1186/gb-2008-9-5-r77

URL : https://hal.archives-ouvertes.fr/hal-00286300

M. Bey, Cello-Oligosaccharide Oxidation Reveals Differences between Two Lytic Polysaccharide Monooxygenases (Family GH61) from Podospora anserina, Applied and Environmental Microbiology, vol.79, issue.2, pp.488-496, 2013.
DOI : 10.1128/AEM.02942-12

URL : https://hal.archives-ouvertes.fr/hal-01268047

C. Bennati-granier, Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnology for Biofuels, vol.89, issue.1, p.90, 2015.
DOI : 10.1034/j.1399-3054.1993.890101.x

URL : https://hal.archives-ouvertes.fr/hal-01202474

Z. Forsberg, Cleavage of cellulose by a CBM33 protein, Protein Science, vol.22, issue.9, pp.1479-1483, 2011.
DOI : 10.1021/bp050361o

L. Leggio and L. , Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase, Nature Communications, vol.300, p.5961, 2015.
DOI : 10.1006/abio.2001.5444

URL : https://hal.archives-ouvertes.fr/hal-01439010

B. Westereng, Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer, Scientific Reports, vol.53, issue.1, p.18561, 2015.
DOI : 10.1002/mnfr.200800199

URL : http://www.nature.com/articles/srep18561.pdf

D. Navarro, Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalisinvolves successive secretion of oxidative and hydrolytic enzymes, Biotechnology for Biofuels, vol.10, issue.1, p.143, 2014.
DOI : 10.1186/1475-2859-10-113

A. Levasseur, The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown, BMC Genomics, vol.15, issue.1, p.486, 2014.
DOI : 10.1186/1471-2164-15-486

URL : https://hal.archives-ouvertes.fr/hal-01204353

M. Couturier, Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus, Biotechnology for Biofuels, vol.9, issue.1, p.216, 2015.
DOI : 10.1186/1475-2859-9-58

URL : https://hal.archives-ouvertes.fr/hal-01439025

L. Poidevin, Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes, Applied Microbiology and Biotechnology, vol.16, issue.17, pp.7457-7469, 2014.
DOI : 10.1111/1462-2920.12253

URL : https://hal.archives-ouvertes.fr/hal-01070025

D. Kracher, Fungal secretomes enhance sugar beet pulp hydrolysis, Biotechnology Journal, vol.35, issue.4, pp.483-492, 2014.
DOI : 10.1007/s10295-008-0454-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162999

G. Henriksson, G. Johansson, and G. Pettersson, A critical review of cellobiose dehydrogenases, Journal of Biotechnology, vol.78, issue.2, pp.93-113, 2000.
DOI : 10.1016/S0168-1656(00)00206-6

M. D. Cameron and S. D. Aust, Cellobiose dehydrogenase???an extracellular fungal flavocytochrome, Enzyme and Microbial Technology, vol.28, issue.2-3, pp.129-138, 2001.
DOI : 10.1016/S0141-0229(00)00307-0

M. Zamocky, Cellobiose Dehydrogenase ??? A Flavocytochrome from Wood-Degrading, Phytopathogenic and Saprotropic Fungi, Current Protein & Peptide Science, vol.7, issue.3, pp.255-280, 2006.
DOI : 10.2174/138920306777452367

J. Langston, Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61, Applied and Environmental Microbiology, vol.77, issue.19, pp.7007-7015, 2011.
DOI : 10.1128/AEM.05815-11

URL : http://aem.asm.org/content/77/19/7007.full.pdf

W. T. Beeson, C. M. Phillips, J. H. Cate, and M. Marletta, Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases, Journal of the American Chemical Society, vol.134, issue.2, pp.890-892, 2012.
DOI : 10.1021/ja210657t

T. Tan, Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation, Nature Communications, vol.66, p.7542, 2015.
DOI : 10.1107/S0907444909042073

URL : http://www.nature.com/articles/ncomms8542.pdf

M. Couturier, Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis, BMC Genomics, vol.13, issue.1, p.57, 2012.
DOI : 10.1351/pac198759020257

URL : https://hal.archives-ouvertes.fr/hal-01001052

Y. Mathieu, Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass, Applied and Environmental Microbiology, vol.82, issue.8, pp.2411-2423, 2016.
DOI : 10.1128/AEM.03761-15

URL : https://hal.archives-ouvertes.fr/hal-01313371

M. Couturier, Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis, Applied Microbiology and Biotechnology, vol.9, issue.1, pp.697-706, 2016.
DOI : 10.1016/B978-1-4832-2734-4.50017-6

F. Piumi, A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme, Applied Microbiology and Biotechnology, vol.35, issue.24, pp.10105-10118, 2014.
DOI : 10.1016/j.bios.2012.02.035

URL : https://hal.archives-ouvertes.fr/hal-01268950

T. Isaksen, A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides, Journal of Biological Chemistry, vol.71, issue.5, pp.2632-2642, 2014.
DOI : 10.1073/pnas.1208822109

URL : http://www.jbc.org/content/289/5/2632.full.pdf

A. S. Borisova, Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity, Journal of Biological Chemistry, vol.119, issue.38, p.660183, 2015.
DOI : 10.1371/journal.pone.0027807

J. Peisach and W. Blumberg, Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins, Archives of Biochemistry and Biophysics, vol.165, issue.2, pp.691-708, 1974.
DOI : 10.1016/0003-9861(74)90298-7

G. Henriksson, V. Sild, I. J. Szabó, G. Pettersson, and G. Johansson, Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1383, issue.1, pp.48-54, 1998.
DOI : 10.1016/S0167-4838(97)00180-5

M. G. Mason, M. T. Wilson, A. Ball, and P. Nicholls, Oxygen reduction by cellobiose oxidoreductase: the role of the haem group, FEBS Letters, vol.6, issue.1-3, pp.29-32, 2002.
DOI : 10.1007/s007750000172

G. Tedeshi, S. Chen, and V. Massey, DT-diaphorase, Journal of Biological Chemistry, vol.26, issue.3, pp.1198-1204, 1995.
DOI : 10.1016/0006-2952(92)90274-M

V. Chobot, F. Hadacek, W. Weckwerth, and L. Kubicova, Iron chelation and redox chemistry of anthranilic acid and 3-hydroxyanthranilic acid: A comparison of two structurally related kynurenine pathway metabolites to obtain improved insights into their potential role in neurological disease development, Journal of Organometallic Chemistry, vol.782, pp.103-110, 2015.
DOI : 10.1016/j.jorganchem.2015.01.005

M. Fabbrini, C. Galli, and P. Gentili, Comparing the catalytic efficiency of some mediators of laccase, Journal of Molecular Catalysis B: Enzymatic, vol.16, issue.5-6, pp.231-240, 2002.
DOI : 10.1016/S1381-1177(01)00067-4

D. Cannella, Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme, Nature Communications, vol.1271, p.11134, 2016.
DOI : 10.1016/j.chroma.2012.11.048

D. Kracher, Extracellular electron transfer systems fuel cellulose oxidative degradation, Science, vol.7, issue.7, 2016.
DOI : 10.1371/journal.ppat.1002137

T. M. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods Enzymol, vol.160, pp.19-25, 1988.
DOI : 10.1016/0076-6879(88)60103-0

B. Westereng, Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, Journal of Chromatography A, vol.1271, issue.1, pp.144-152, 2013.
DOI : 10.1016/j.chroma.2012.11.048

G. R. Hemsworth, G. J. Davies, and P. H. Walton, Recent insights into copper-containing lytic polysaccharide mono-oxygenases, Current Opinion in Structural Biology, vol.23, issue.5, pp.660-668, 2013.
DOI : 10.1016/j.sbi.2013.05.006

Z. Forsberg, Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases, Proc. Natl. Acad. Sci. USA 111, pp.8446-51, 2014.
DOI : 10.1111/j.1742-4658.2009.06972.x

F. L. Aachmann, M. Sørlie, G. Skjåk-braek, V. G. Eijsink, and G. Vaaje-kolstad, NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions, Proc. Natl. Acad. Sci. USA, pp.18779-18784, 2012.
DOI : 10.1093/nar/gkq399

G. R. Hemsworth, B. Henrissat, G. J. Davies, and P. Walton, Discovery and characterization of a new family of lytic polysaccharide monooxygenases, Nature Chemical Biology, vol.10, issue.2, pp.122-128, 2014.
DOI : 10.1093/nar/gkm216

C. Schulz, R. Kittl, R. Ludwig, and L. Gorton, Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes, ACS Catalysis, vol.6, issue.2, pp.555-563, 2016.
DOI : 10.1021/acscatal.5b01854