X. Meng and A. J. Ragauskas, Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates, Curr Opin Biotechnol, vol.27, pp.150-158, 2014.

S. Prasad, M. S. Dhanya, N. Gupta, and A. Kumar, Biofuels from biomass: a sustainable alternative to energy and environment, Biochem Cell Arch, vol.12, pp.255-60, 2012.

L. R. Lynd, M. S. Laser, D. Bransby, B. E. Dale, B. Davison et al., How biotech can transform biofuels, Nat Biotechnol, vol.26, pp.169-72, 2008.

A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney et al., The path forward for biofuels and biomaterials, Science, vol.311, issue.5760, pp.484-493, 2006.

F. Mba-medie, G. J. Davies, M. Drancourt, and B. Henrissat, Genome analyses highlight the different biological roles of cellulases, Nat Rev Microbiol, vol.10, issue.3, pp.227-261, 2012.

B. Henrissat, H. Driguez, C. Viet, and M. Schülein, Synergism of cellulases from Trichoderma reesei in the degradation of cellulose, Nat Biotechnol, vol.3, pp.722-728, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00309711

C. M. Phillips, W. T. Beeson, J. H. Cate, and M. A. Marletta, Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa, ACS Chem Biol, vol.6, pp.1399-406, 2011.

G. Vaaje-kolstad, B. Westereng, S. J. Horn, Z. Liu, H. Zhai et al., An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides, Science, vol.330, pp.219-241, 2010.

J. W. Agger, T. Isaksen, A. Várnai, S. Vidal-melgosa, W. Willats et al., Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation, Proc Natl Acad Sci, vol.111, pp.6287-92, 2014.

P. V. Harris, D. Welner, K. C. Mcfarland, E. Re, N. Poulsen et al., Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family, Biochemistry, vol.49, issue.15, pp.3305-3321, 2010.

B. Westereng, T. Ishida, G. Vaaje-kolstad, M. Wu, V. Eijsink et al., The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose, PLoS ONE, vol.6, p.27807, 2011.

J. A. Langston, T. Shaghasi, E. Abbate, F. Xu, E. Vlasenko et al., Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61, Appl Environ Microbiol, vol.77, pp.7007-7022, 2011.

R. J. Quinlan, M. D. Sweeney, L. Leggio, L. Otten, H. Poulsen et al., Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proc Natl Acad Sci, vol.108, pp.15079-84, 2011.

W. T. Beeson, C. M. Phillips, J. Cate, and M. A. Marletta, Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases, J Am Chem Soc, vol.134, pp.890-892, 2012.

V. V. Vu, W. T. Beeson, E. A. Span, E. R. Farquhar, and M. A. Marletta, A family of starch-active polysaccharide monooxygenases, Proc Natl Acad Sci USA, vol.111, pp.13822-13829, 2014.

L. Lo-leggio, T. J. Simmons, J. Poulsen, and K. Frandsen, Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase, Nat Commun, vol.6, p.5961, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439010

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnol Biofuels, vol.6, p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268121

G. R. Hemsworth, B. Henrissat, G. J. Davies, and P. H. Walton, Discovery and characterization of a new family of lytic polysaccharide monooxygenases, Nat Chem Biol, vol.10, issue.2, pp.122-128, 2014.

G. R. Hemsworth, E. M. Johnston, G. J. Davies, and P. H. Walton, Lytic polysaccharide monooxygenases in biomass conversion, Trends Biotechnol, vol.33, pp.747-61, 2015.

C. Bennati-granier, S. Garajova, C. Champion, S. Grisel, M. Haon et al., Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnol Biofuels, vol.8, p.90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202474

T. Isaksen, B. Westereng, F. L. Aachmann, J. W. Agger, D. Kracher et al., A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides, J Biol Chem, vol.289, issue.5, pp.2632-2674, 2014.

Z. Forsberg, G. Vaaje-kolstad, B. Westereng, A. C. Bunaes, Y. Stenstrøm et al., Cleavage of cellulose by a CBM33 protein, Protein Sci, vol.20, pp.1479-83, 2011.

C. Sygmund, D. Kracher, S. Scheiblbrandner, K. Zahma, A. Felice et al., Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation, Appl Environ Microbiol, vol.78, pp.6161-71, 2012.

M. Bey, S. Zhou, L. Poidevin, B. Henrissat, P. M. Coutinho et al., Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina, Appl Environ Microbiol, vol.79, pp.488-96, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268047

R. Kittl, D. Kracher, D. Burgstaller, D. Haltrich, and R. Ludwig, Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay, Biotechnol Biofuels, vol.5, p.79, 2012.

F. Sibilla, D. De-maría, and P. , Integrating white biotechnology in lignocellulosic biomass transformations: from enzyme-catalysis to metabolic engineering, The role of catalysis for the sustainable production of bio-fuels and bio-chemicals, vol.1, pp.445-66, 2012.

D. De-maría and P. , On the use of seawater as reaction media for large-scale applications in biorefineries, ChemCatChem, vol.5, pp.1643-1651, 2013.

H. Y. Chen, D. S. Xue, X. Y. Feng, and S. J. Yao, Screening and production of ligninolytic enzyme by a marine-derived fungal Pestalotiopsis sp, J63. Appl Biochem Biotechnol, vol.165, pp.1754-69, 2011.

Y. Arfi, D. Chevret, B. Henrissat, J. Berrin, A. Levasseur et al., Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp, Nat Commun, vol.4, p.1810, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01000933

X. Lin, W. T. Beeson, C. M. Phillips, M. A. Marletta, and J. Cate, Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases, Structure, vol.20, pp.1051-61, 2012.

J. K. Lanyi, Salt-dependent properties of proteins from extremely halophilic bacteria, Bacteriol Rev, vol.38, pp.272-90, 1974.

M. Kern, J. E. Mcgeehan, S. D. Streeter, R. Martin, K. Besser et al., Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance, PNAS, vol.110, pp.10189-109194, 2013.

T. Tan, D. Kracher, R. Gandini, C. Sygmund, R. Kittl et al., Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation, Nat Commun, vol.6, p.7542, 2015.

S. Karkehabadi, H. Hansson, S. Kim, K. Piens, C. Mitchinson et al., The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution, J Mol Biol, vol.31, pp.144-54, 2008.

M. Wu, G. T. Beckham, A. M. Larsson, T. Ishida, and S. Kim, Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium, J Biol Chem, vol.288, pp.12828-12867, 2013.

B. Westereng, J. W. Agger, S. J. Horn, G. Vaaje-kolstad, F. L. Aachmann et al., Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, J Chromatogr A, vol.1271, pp.144-52, 2013.

P. K. Busk and L. Lange, Classification of fungal and bacterial lytic polysaccharide monooxygenases, BMC Gemomics, vol.16, p.368, 2015.

M. Haon, S. Grisel, D. Navarro, A. Gruet, J. Berrin et al., Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris, Front Microbiol, vol.6, p.1002, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237579

F. Piumi, A. Levasser, D. Navarro, S. Zhou, Y. Mathieu et al., A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme, Appl Microbiol Biotechnol, vol.98, pp.10105-10123, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268950

T. M. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods Enzym, vol.160, pp.19-25, 1988.

K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, pp.195-201, 2006.