A. Fernie, R. Trethewey, A. Krotzky, and L. Willmitzer, Innovation: Metabolite profiling: from diagnostics to systems biology, Nature Reviews Molecular Cell Biology, vol.216, issue.9, pp.763-769, 2004.
DOI : 10.1021/ja0109388

URL : http://hdl.handle.net/11858/00-001M-0000-0014-2CF6-3

D. Kliebenstein and O. A. , Making new molecules ??? evolution of pathways for novel metabolites in plants, Current Opinion in Plant Biology, vol.15, issue.4, pp.415-423
DOI : 10.1016/j.pbi.2012.05.005

D. Auria, J. Gershenzon, and J. , The secondary metabolism of Arabidopsis thaliana: growing like a weed, Curr Opin Plant Biol, vol.8, issue.3, pp.308-316, 2005.

Y. Brotman, D. Riewe, J. Lisec, R. Meyer, L. Willmitzer et al., Identification of enzymatic and regulatory genes of plant metabolism through QTL analysis in Arabidopsis, Journal of Plant Physiology, vol.168, issue.12, pp.1387-1394, 2011.
DOI : 10.1016/j.jplph.2011.03.008

C. Alonso-blanco, M. Aarts, L. Bentsink, J. Keurentjes, M. Reymond et al., What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell, pp.1877-1896, 2009.
DOI : 10.1105/tpc.109.068114

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729614

D. Weigel, Natural Variation in Arabidopsis: From Molecular Genetics to Ecological Genomics, PLANT PHYSIOLOGY, vol.158, issue.1, pp.2-22
DOI : 10.1104/pp.111.189845

J. Keurentjes, J. Fu, C. De-vos, A. Lommen, R. Hall et al., The genetics of plant metabolism, Nature Genetics, vol.105, issue.7, pp.38842-849, 2006.
DOI : 10.1038/ng1815

J. Lisec, R. Meyer, M. Steinfath, H. Redestig, M. Becher et al., Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations, The Plant Journal, vol.18, issue.6, pp.53960-972, 2008.
DOI : 10.1111/j.1365-313X.2007.03383.x

H. Rowe, B. Hansen, B. Halkier, and D. Kliebenstein, Biochemical Networks and Epistasis Shape the Arabidopsis thaliana Metabolome, THE PLANT CELL ONLINE, vol.20, issue.5, pp.1199-1216, 2008.
DOI : 10.1105/tpc.108.058131

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2438456

D. Kliebenstein, J. Gershenzon, and T. Mitchell-olds, Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds, Genetics, vol.159, issue.1, pp.359-370, 2001.

D. Tholl, F. Chen, J. Petri, J. Gershenzon, and E. Pichersky, Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers, The Plant Journal, vol.52, issue.Suppl. A, pp.757-771, 2005.
DOI : 10.1111/j.1365-313X.2005.02417.x

P. Bednarek, B. Schneider, A. Svatos, N. Oldham, and K. Hahlbrock, Structural Complexity, Differential Response to Infection, and Tissue Specificity of Indolic and Phenylpropanoid Secondary Metabolism in Arabidopsis Roots, PLANT PHYSIOLOGY, vol.138, issue.2, pp.1058-1070, 2005.
DOI : 10.1104/pp.104.057794

K. Kai, B. Shimizu, M. Mizutani, K. Watanabe, and K. Sakata, Accumulation of coumarins in Arabidopsis thaliana, Phytochemistry, vol.67, issue.4, pp.379-386, 2006.
DOI : 10.1016/j.phytochem.2005.11.006

K. Kai, M. Mizutani, N. Kawamura, R. Yamamoto, M. Tamai et al., Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana, Plant J, issue.6, pp.55989-999, 2008.

A. Rohde, K. Morreel, J. Ralph, G. Goeminne, V. Hostyn et al., Molecular Phenotyping of the pal1 and pal2 Mutants of Arabidopsis thaliana Reveals Far-Reaching Consequences on Phenylpropanoid, Amino Acid, and Carbohydrate Metabolism, THE PLANT CELL ONLINE, vol.16, issue.10, pp.162749-2771, 2004.
DOI : 10.1105/tpc.104.023705

URL : https://hal.archives-ouvertes.fr/hal-00306775

F. Baillieul, P. De-ruffray, and S. Kauffmann, Molecular Cloning and Biological Activity of alpha -, beta -, and gamma -Megaspermin, Three Elicitins Secreted by Phytophthora megasperma H20, PLANT PHYSIOLOGY, vol.131, issue.1, pp.155-166, 2003.
DOI : 10.1104/pp.012658

R. Stern, Psoralen and Ultraviolet A Light Therapy for Psoriasis, New England Journal of Medicine, vol.357, issue.7, pp.682-690, 2007.
DOI : 10.1056/NEJMct072317

H. Wulff, H. Rauer, T. During, C. Hanselmann, K. Ruff et al., ChemInform Abstract: Alkoxypsoralens, Novel Nonpeptide Blockers of Shaker-Type K+ Channels: Synthesis and Photoreactivity., ChemInform, vol.41, issue.12, pp.414542-4549, 1998.
DOI : 10.1002/chin.199912147

F. Karamat, A. Olry, S. Doerper, G. Vialart, P. Ullmann et al., CYP98A22, a phenolic ester 3???-hydroxylase specialized in the synthesis of chlorogenic acid, as a new tool for enhancing the furanocoumarin concentration in Ruta graveolens, BMC Plant Biology, vol.12, issue.1, p.152, 2012.
DOI : 10.1105/tpc.020297

URL : https://hal.archives-ouvertes.fr/hal-00753705

S. Bertolucci, A. Pereira, J. Pinto, A. Oliveira, and F. Braga, Leaves under Different Shade Levels, Chemistry & Biodiversity, vol.92, issue.2, pp.288-295, 2013.
DOI : 10.1002/cbdv.201200166

L. Costet, B. Fritig, and S. Kauffmann, Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants, Physiologia Plantarum, vol.10, issue.2, pp.228-235, 2002.
DOI : 10.1146/annurev.arplant.49.1.585

B. Gnonlonfin, F. Gbaguidi, J. Gbenou, A. Sanni, and L. Brimer, Changes in scopoletin concentration in cassava chips from four varieties during storage, Journal of the Science of Food and Agriculture, vol.67, issue.13, pp.912344-2347, 2011.
DOI : 10.1002/jsfa.4465

S. Matsumoto, M. Mizutani, K. Sakata, and B. Shimizu, Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam., Phytochemistry, vol.74, pp.49-57, 2012.
DOI : 10.1016/j.phytochem.2011.11.009

E. Prats, J. Galindo, M. Bazzalo, A. Leon, F. Macias et al., Antifungal Activity of a New Phenolic Compound from Capitulum of a Head Rot-resistant Sunflower Genotype, Journal of Chemical Ecology, vol.27, issue.12, pp.332245-2253, 2007.
DOI : 10.1007/s10886-007-9388-9

J. Sargent and F. Skoog, Effects of Indoleacetic Acid and Kinetin on Scopoletin-Scopolin Levels in Relation to Growth of Tobacco Tissues in Vitro, PLANT PHYSIOLOGY, vol.35, issue.6, pp.934-941, 1960.
DOI : 10.1104/pp.35.6.934

G. Schmeda-hirschmann, M. Jordan, A. Gerth, D. Wilken, E. Hormazabal et al., Secondary Metabolite Content in Fabiana imbricata Plants and in vitro Cultures, Zeitschrift f??r Naturforschung C, vol.59, issue.1-2, pp.48-54, 2004.
DOI : 10.1515/znc-2004-1-211

G. Taguchi, S. Fujikawa, T. Yazawa, R. Kodaira, N. Hayashida et al., Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells, Plant Science, vol.151, issue.2, pp.153-161, 2000.
DOI : 10.1016/S0168-9452(99)00212-5

B. Tal and D. Robeson, The Metabolism of Sunflower Phytoalexins Ayapin and Scopoletin: Plant-Fungus Interactions, PLANT PHYSIOLOGY, vol.82, issue.1, pp.167-172, 1986.
DOI : 10.1104/pp.82.1.167

G. Gnonlonfin, A. Sanni, and L. Brimer, Review Scopoletin ??? A Coumarin Phytoalexin with Medicinal Properties, Critical Reviews in Plant Sciences, vol.40, issue.1, pp.47-56, 2012.
DOI : 10.1016/0031-9422(90)85017-A

T. Vogt, Phenylpropanoid Biosynthesis, Molecular Plant, vol.3, issue.1, pp.2-20
DOI : 10.1093/mp/ssp106

URL : http://doi.org/10.1093/mp/ssp106

C. Fraser and C. Chapple, The Phenylpropanoid Pathway in Arabidopsis, The Arabidopsis Book, vol.9, p.152, 2011.
DOI : 10.1199/tab.0152

G. Schoch, S. Goepfert, M. Morant, A. Hehn, D. Meyer et al., Werck-Reichhart D: CYP98A3 from Arabidopsis thaliana is a 3?-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway, J Biol Chem, issue.39, pp.27636566-36574, 2001.

J. Ehlting, D. Buttner, Q. Wang, C. Douglas, I. Somssich et al., Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms, The Plant Journal, vol.98, issue.1, pp.9-20, 1999.
DOI : 10.1104/pp.113.1.65

B. Hamberger and K. Hahlbrock, comprises one rare, sinapate-activating and three commonly occurring isoenzymes, Proceedings of the National Academy of Sciences, vol.244, issue.7, pp.2209-2214, 2004.
DOI : 10.1101/gr.751803

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC357076

L. Hoffmann, S. Maury, F. Martz, P. Geoffroy, and M. Legrand, Purification, Cloning, and Properties of an Acyltransferase Controlling Shikimate and Quinate Ester Intermediates in Phenylpropanoid Metabolism, Journal of Biological Chemistry, vol.278, issue.1, pp.95-103, 2003.
DOI : 10.1074/jbc.M209362200

L. Hoffmann, S. Besseau, P. Geoffroy, C. Ritzenthaler, D. Meyer et al., Silencing of Hydroxycinnamoyl-Coenzyme A Shikimate/Quinate Hydroxycinnamoyltransferase Affects Phenylpropanoid Biosynthesis, THE PLANT CELL ONLINE, vol.16, issue.6, pp.1446-1465, 2004.
DOI : 10.1105/tpc.020297

T. Kuhnl, U. Koch, W. Heller, and E. Wellmann, Chlorogenic acid biosynthesis: Characterization of a light-induced microsomal 5-O-(4-coumaroyl)-d-quinate/shikimate 3???-hydroxylase from carrot (Daucus carota L.) cell suspension cultures, Archives of Biochemistry and Biophysics, vol.258, issue.1, pp.226-232, 1987.
DOI : 10.1016/0003-9861(87)90339-0

T. Goujon, R. Sibout, B. Pollet, B. Maba, L. Nussaume et al., A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters, Plant Mol Biol, issue.6, pp.51973-989, 2003.

C. Wils, W. Brandt, K. Manke, and T. Vogt, A single amino acid determines position specificity of an Arabidopsis thaliana CCoAOMT-like O-methyltransferase, FEBS Lett, vol.2013, issue.5876, pp.683-689

E. Grienenberger, S. Besseau, P. Geoffroy, D. Debayle, D. Heintz et al., A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines, The Plant Journal, vol.3, issue.Suppl., pp.246-259, 2009.
DOI : 10.1111/j.1365-313X.2008.03773.x

F. Hino, M. Okazaki, and Y. Miura, Effect of 2,4-Dichlorophenoxyacetic Acid on Glucosylation of Scopoletin to Scopolin in Tobacco Tissue Culture, PLANT PHYSIOLOGY, vol.69, issue.4, pp.810-813, 1982.
DOI : 10.1104/pp.69.4.810

F. Bourgaud, A. Hehn, R. Larbat, S. Doerper, E. Gontier et al., Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes, Phytochemistry Reviews, vol.106, issue.2-3, pp.293-308, 2006.
DOI : 10.1007/s11101-006-9040-2

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. Wilson et al., An ???Electronic Fluorescent Pictograph??? Browser for Exploring and Analyzing Large-Scale Biological Data Sets, PLoS ONE, vol.39, issue.8, p.718, 2007.
DOI : 10.1371/journal.pone.0000718.g009

URL : http://doi.org/10.1371/journal.pone.0000718

A. Fernie and H. Klee, The Use of Natural Genetic Diversity in the Understanding of Metabolic Organization and Regulation, Frontiers in Plant Science, vol.2, p.59, 2011.
DOI : 10.3389/fpls.2011.00059

J. Lisec, M. Steinfath, R. Meyer, J. Selbig, A. Melchinger et al., RIL and IL populations, The Plant Journal, vol.140, issue.5, pp.777-788, 2009.
DOI : 10.1111/j.1365-313X.2009.03910.x

M. Grillo, C. Li, M. Hammond, L. Wang, and D. Schemske, Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana, New Phytol, vol.2013, issue.1974, pp.1321-1331

S. Balasubramanian, C. Schwartz, A. Singh, N. Warthmann, M. Kim et al., QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines, PLoS ONE, vol.19, issue.2, p.4318, 2009.
DOI : 10.1371/journal.pone.0004318.s004

URL : http://doi.org/10.1371/journal.pone.0004318

A. Price, Believe it or not, QTLs are accurate! Trends Plant Sci, pp.213-216, 2006.
DOI : 10.1016/j.tplants.2006.03.006

M. Wayne and L. Mcintyre, Combining mapping and arraying: An approach to candidate gene identification, Proceedings of the National Academy of Sciences, vol.130, issue.1, pp.9914903-14906, 2002.
DOI : 10.1146/annurev.ento.43.1.323

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137517

J. Werner, J. Borevitz, N. Warthmann, G. Trainer, J. Ecker et al., Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation, Proceedings of the National Academy of Sciences, vol.16, issue.11, pp.2460-2465, 2005.
DOI : 10.1105/tpc.104.026062

G. Vigani, P. Morandini, and I. Murgia, Searching iron sensors in plants by exploring the link among 2???-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency, Frontiers in Plant Science, vol.4, p.169, 2013.
DOI : 10.3389/fpls.2013.00169

P. Fourcroy, P. Siso-terraza, D. Sudre, M. Saviron, G. Reyt et al., Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency, New Phytol, vol.2014, issue.2011, pp.155-167
URL : https://hal.archives-ouvertes.fr/hal-00921475

N. Schmid, R. Giehl, S. Doll, H. Mock, N. Strehmel et al., Feruloyl-CoA 6'-Hydroxylase1-Dependent Coumarins Mediate Iron Acquisition from Alkaline Substrates in Arabidopsis, PLANT PHYSIOLOGY, vol.164, issue.1, pp.160-172
DOI : 10.1104/pp.113.228544

S. Micallef, M. Shiaris, and A. Colon-carmona, Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates, Journal of Experimental Botany, vol.60, issue.6, pp.1729-1742, 2009.
DOI : 10.1093/jxb/erp053

C. Nguyen, V. Bouque, F. Bourgaud, and A. Guckert, Quantification of Daidzein and Furanocoumarin Conjugates ofPsoralea cinerea L. (Leguminosae), Phytochemical Analysis, vol.8, issue.1, pp.27-31, 1997.
DOI : 10.1002/(SICI)1099-1565(199701)8:1<27::AID-PCA331>3.0.CO;2-A

D. Arends, P. Prins, R. Jansen, and K. Broman, R/qtl: high-throughput multiple QTL mapping: Fig. 1., Bioinformatics, vol.26, issue.23, pp.2990-2992, 2010.
DOI : 10.1093/bioinformatics/btq565

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982156

K. Broman, H. Wu, S. Sen, and G. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, issue.7, pp.889-890, 2003.
DOI : 10.1093/bioinformatics/btg112

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673