M. Andriamihaja, A. M. Davila, M. Eklou-lawson, N. Petit, S. Delpal et al., Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet, Am J Physiol Gastrointest Liver Physiol, vol.299, pp.1030-1037, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173385

M. Andriamihaja, A. Lan, M. Beaumont, M. Audebert, X. Wong et al.,

F. Blachier, The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells, Free Radic Biol Med, vol.85, pp.219-227, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568625

T. Bansal, R. C. Alaniz, T. K. Wood, and A. Jayaraman, The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation, Proc Natl Acad Sci, vol.107, pp.228-233, 2010.

F. Blachier, F. Mariotti, J. F. Huneau, and T. D. , Effects of amino acidderived luminal metabolites on the colonic epithelium and physiopathological consequences, Amino Acids, vol.33, pp.547-562, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01186779

A. Chacko and J. H. Cummings, Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food, Gut, vol.29, pp.809-815, 1988.

J. H. Cummings and G. T. Macfarlane, The control and consequences of bacterial fermentation in the human colon, J Appl Bacteriol, vol.70, pp.443-459, 1991.

A. M. Davila, F. Blachier, M. Gotteland, M. Andriamihaja, P. H. Benetti et al., Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host (reprinted from, Pharmacol Res, vol.68, pp.114-126, 2012.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Pena et al., Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines, Clin Exper Immunol, vol.114, pp.385-391, 1998.

E. Gabele, K. Dostert, C. Hofmann, R. Wiest, J. Scholmerich et al., DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH, J Hepatol, vol.55, pp.1391-1399, 2011.

J. I. Grill, J. Neumann, F. Hiltwein, F. T. Kolligs, and M. R. Schneider, Intestinal E-cadherin deficiency aggravates dextran sodium sulfate-induced colitis, Dig Dis Sci, vol.60, pp.895-902, 2015.

H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost et al., Review article: the role of butyrate on colonic function, Aliment Pharmacol Ther, vol.27, pp.104-119, 2008.

J. K. Hou, B. Abraham, and H. El-serag, Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature, Am J Gastroenterol, vol.106, pp.563-573, 2011.

R. Hughes, E. A. Magee, and S. Bingham, Protein degradation in the large intestine: relevance to colorectal cancer, Curr Issues Intest Microbiol, vol.1, pp.51-58, 2000.

P. Jantchou, S. Morois, F. Clavel-chapelon, and B. Mc, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study, Am J Gastroenterol, vol.105, pp.2195-2201, 2010.

S. L. Jowett, C. J. Seal, M. S. Pearce, E. Phillips, W. Gregory et al., Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study, Gut, vol.53, pp.1479-1484, 2004.

A. Karlsson, A. Jagervall, M. Pettersson, A. K. Andersson, P. G. Gillberg et al., Dextran sulphate sodium induces acute colitis and alters hepatic function in hamsters, Int Immunopharmacol, vol.8, pp.20-27, 2008.

A. Kaser, S. Zeissig, and R. S. Blumberg, Inflammatory bowel disease, Annu Rev Immunol, vol.28, pp.573-621, 2010.

A. Lan, M. Andriamihaja, J. M. Blouin, X. Liu, V. Descatoire et al., High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon, J Nutr Biochem, vol.26, pp.91-98, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535233

A. Lan, F. Blachier, R. Benamouzig, M. Beaumont, C. Barrat et al., Mucosal healing in inflammatory bowel diseases: is there a place for nutritional supplementation?, Inflamm Bowel Dis, vol.21, pp.198-207, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01536436

D. Lee, L. Albenberg, C. Compher, R. Baldassano, D. Piccoli et al., Diet in the pathogenesis and treatment of inflammatory bowel diseases, Gastroenterology, vol.148, pp.1087-1106, 2015.

X. Liu, M. Beaumont, F. Walker, C. Chaumontet, M. Andriamihaja et al.,

D. Tome, A. M. Davila, J. C. Marie, and F. Blachier, Beneficial effects of an amino Acid mixture on colonic mucosal healing in rats, Inflamm Bowel Dis, vol.19, pp.2895-2905, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01186910

X. Liu, J. M. Blouin, A. Santacruz, A. Lan, M. Andriamihaja et al., High protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: The increased luminal bulk connection, Am J Physiol Gastrointest Liver Physiol, vol.307, pp.459-470, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173417

G. T. Macfarlane and S. Macfarlane, Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics, J Clin Gastroenterol, vol.45, pp.120-127, 2011.

S. Melgar, A. Karlsson, and E. Michaelsson, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation, Am J Physiol Gastrointest Liver Physiol, vol.288, pp.1328-1338, 2005.

H. R. Michie, Metabolism of sepsis and multiple organ failure, World J Surg, vol.20, pp.460-464, 1996.

S. Mimoun, M. Andriamihaja, C. Chaumontet, C. Atanasiu, R. Benamouzig et al., Detoxification of H(2)S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity, Antiox Redox Signal, vol.17, pp.1-10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00966772

N. A. Molodecky, I. S. Soon, D. M. Rabi, W. A. Ghali, M. Ferris et al., Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review, Gastroenterology, vol.142, pp.46-54, 2012.

C. Morens, C. Gaudichon, G. Fromentin, A. Marsset-baglieri, A. Bensaid et al., Daily delivery of dietary nitrogen to the periphery is stable in rats adapted to increased protein intake, Am J Physiol Endocrinol Metab, vol.281, pp.826-836, 2001.

M. Ooi, S. Nishiumi, Y. T. Shiomi, Y. Kohashi, M. Fukunaga et al., GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis, Inflamm Res, vol.60, pp.831-840, 2011.

S. Reif, I. Klein, F. Lubin, M. Farbstein, A. Hallak et al., Pre-illness dietary factors in inflammatory bowel disease, Gut, vol.40, pp.754-760, 1997.

F. M. Ruemmele, Bacterial mucosa cross-talk and pathophysiology of inflammation, J Pediatr Gastroenterol Nutr, vol.48, issue.2, pp.49-51, 2009.

N. Sakamoto, S. Kono, K. Wakai, Y. Fukuda, M. Satomi et al., Group of the Research Committee on Inflammatory Bowel Disease in Japan. Dietary risk factors for inflammatory bowel disease: a multicenter casecontrol study in Japan, vol.11, pp.154-163, 2005.

M. R. Schneider, M. Dahlhoff, D. Horst, B. Hirschi, K. Trulzsch et al., A key role for E-cadherin in intestinal homeostasis and Paneth cell maturation, PLos One, vol.5, p.14325, 2010.

W. Strober, I. J. Fuss, and R. S. Blumberg, The immunology of mucosal models of inflammation, Annu Rev Immunol, vol.20, pp.495-549, 2002.

K. Windey, D. Preter, V. Verbeke, and K. , Relevance of protein fermentation to gut health, Mol Nutr Food Res, vol.56, pp.184-196, 2012.

S. Wirtz and M. F. Neurath, Mouse models of inflammatory bowel disease, Adv Drug Deliv Rev, vol.59, pp.1073-1083, 2007.

Y. Yan, V. Kolachala, G. Dalmasso, H. Nguyen, H. Laroui et al., Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis, PLos One, vol.4, p.6073, 2009.