E. Masson, E. Sibille, L. Martine, F. Chaux-picquet, L. Bretillon et al., Apprehending ganglioside diversity: a comprehensive methodological approach, Journal of Lipid Research, vol.947, issue.948, pp.1821-1856, 2015.
DOI : 10.1007/978-1-4684-7844-0_2

URL : https://hal.archives-ouvertes.fr/hal-01187490

L. Svennerholm, Ganglioside Designation, Adv Exp Med Biol, vol.125, pp.11-7361610, 1980.
DOI : 10.1007/978-1-4684-7844-0_2

S. Degroote, J. Wolthoorn, and G. Van-meer, The cell biology of glycosphingolipids, Seminars in Cell & Developmental Biology, vol.15, issue.4, pp.375-87, 2004.
DOI : 10.1016/j.semcdb.2004.03.007

R. Yu, M. Yanagisawa, and T. Ariga, Glycosphingolipid Structures, Comprehensive Glycoscience, vol.1, pp.73-120, 2007.
DOI : 10.1016/B978-044451967-2/00003-9

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, issue.6633, pp.569-72, 1997.
DOI : 10.1038/42408

K. Simons and M. Gerl, Revitalizing membrane rafts: new tools and insights, Nature Reviews Molecular Cell Biology, vol.74, issue.10, pp.688-99, 2010.
DOI : 10.1091/mbc.10.4.1043

S. Hakomori and Y. Igarashi, Functional Role of Glycosphingolipids in Cell Recognition and Signaling, The Journal of Biochemistry, vol.118, issue.6, pp.1091-103, 1995.
DOI : 10.1093/oxfordjournals.jbchem.a124992

R. Yu, Y. Tsai, and T. Ariga, Functional Roles of Gangliosides in Neurodevelopment: An Overview of Recent Advances, Neurochemical Research, vol.69, issue.Suppl 1, pp.1230-1274, 2012.
DOI : 10.1351/pac199769122475

K. Furukawa, Y. Ohmi, Y. Ohkawa, N. Tokuda, Y. Kondo et al., Regulatory Mechanisms of Nervous Systems with Glycosphingolipids, Neurochemical Research, vol.18, issue.Suppl 1, pp.1578-86, 2011.
DOI : 10.1091/mbc.E07-01-0071

R. Proia, Glycosphingolipid functions: insights from engineered mouse models, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.358, issue.1433, pp.879-83, 1433.
DOI : 10.1098/rstb.2003.1268

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693182

T. Kolter and K. Sandhoff, Sphingolipid metabolism diseases, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.12, pp.2057-79, 2006.
DOI : 10.1016/j.bbamem.2006.05.027

URL : http://doi.org/10.1016/j.bbamem.2006.05.027

M. Simpson, H. Cross, C. Proukakis, D. Priestman, D. Neville et al., Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase, Nature Genetics, vol.60, issue.11
DOI : 10.1016/0887-8994(93)90066-L

J. Daniotti, C. Landa, and H. Maccioni, Regulation of Ganglioside Composition and Synthesis Is Different in Developing Chick Retinal Pigment Epithelium and Neural Retina, Journal of Neurochemistry, vol.44, issue.3, pp.1131-1137, 1994.
DOI : 10.1007/978-1-4613-1751-7_2

H. Dreyfus, P. Urban, S. Harth, A. Preti, and P. Mandel, Retinal Gangliosides: Composition, Evolution with Age. Biosynthetic and Metabolic Approaches, Adv Exp Med Biol, vol.71, pp.163-88, 1976.
DOI : 10.1007/978-1-4614-4614-9_11

C. Landa and A. Moscona, Gangliosides in postmitotic retina of chick embryo: Changes in vivo and in cell cultures, Developmental Brain Research, vol.21, issue.2, pp.193-202, 1985.
DOI : 10.1016/0165-3806(85)90208-1

J. Daniotti, C. Landa, H. Rosner, and H. Maccioni, GD3 Prevalence in Adult Rat Retina Correlates with the Maintenance of a High GD3-/GM2-Synthase Activity Ratio Throughout Development, Journal of Neurochemistry, vol.50, issue.6, pp.2054-2062, 1991.
DOI : 10.1016/0009-3084(70)90024-1

H. Dreyfus, B. Guerold, V. Fontaine, J. Sahel, and D. Hicks, Simplified ganglioside composition of photoreceptors compared to other retinal neurons, Invest Ophthalmol Vis Sci, vol.37, issue.4, pp.574-85, 1996.

V. Fontaine, D. Hicks, and H. Dreyfus, Changes in ganglioside composition of photoreceptors during postnatal maturation of the rat retina, Glycobiology, vol.8, issue.2, pp.183-90, 1998.
DOI : 10.1093/glycob/8.2.183

P. Urban, S. Harth, L. Freysz, and H. Dreyfus, Brain and Retinal Ganglioside Composition from Different Species Determined by TLC and HPTLC, Adv Exp Med Biol, vol.125, pp.149-57, 1980.
DOI : 10.1007/978-1-4684-7844-0_14

K. Sango, M. Takano, K. Ajiki, A. Tokashiki, N. Arai et al., Impaired Neurite Outgrowth in the Retina of a Murine Model of Sandhoff Disease, Investigative Opthalmology & Visual Science, vol.46, issue.9, pp.3420-3425, 2005.
DOI : 10.1167/iovs.05-0038

C. Denny, J. Alroy, B. Pawlyk, M. Sandberg, A. Azzo et al., Neurochemical, morphological, and neurophysiological abnormalities in retinas of Sandhoff and GM1 gangliosidosis mice, Journal of Neurochemistry, vol.67, issue.5, pp.1294-302, 2007.
DOI : 10.1007/978-1-4684-1200-0_34

J. Choi, J. Kim, and C. Joo, Activation of MAPK and CREB by GM1 Induces Survival of RGCs in the Retina with Axotomized Nerve, Investigative Opthalmology & Visual Science, vol.44, issue.4, pp.1747-52, 2003.
DOI : 10.1167/iovs.01-0886

S. Mohand-said, M. Weber, D. Hicks, H. Dreyfus, and J. Sahel, Intravitreal Injection of Ganglioside GM1 After Ischemia Reduces Retinal Damage in Rats, Stroke, vol.28, issue.3, pp.617-638, 1997.
DOI : 10.1161/01.STR.28.3.617

H. Kadowaki, J. Evans, and R. Mccluer, Separation of brain monosialoganglioside molecular species by high-performance liquid chromatography, J Lipid Res, vol.25, issue.10, pp.1132-1141, 1984.

Y. Li, E. Sugiyama, T. Ariga, J. Nakayama, M. Hayama et al., Association of GM4 ganglioside with the membrane surrounding lipid droplets in shark liver, Journal of Lipid Research, vol.1125, issue.7, pp.1019-1044, 2002.
DOI : 10.1074/jbc.R000005200

R. Yu and R. Ledeen, Gangliosides of human, bovine, and rabbit plasma, J Lipid Res, vol.13, issue.5, pp.680-686, 1972.

P. Palestini, M. Masserini, A. Fiorilli, E. Calappi, and G. Tettamanti, Age-Related Changes in the Ceramide Composition of the Major Gangliosides Present in Rat Brain Subcellular Fractions Enriched in Plasma Membranes of Neuronal and Myelin Origin, Journal of Neurochemistry, vol.25, issue.3, pp.955-60, 1993.
DOI : 10.1016/0005-2760(73)90055-6

P. Palestini, M. Masserini, S. Sonnino, A. Giuliani, and G. Tettamanti, Changes in the Ceramide Composition of Rat Forebrain Gangliosides with Age, Journal of Neurochemistry, vol.251, issue.1, pp.230-235, 1990.
DOI : 10.1111/j.1471-4159.1973.tb06023.x

A. Garcia, J. Chavez, and Y. Mechref, Rapid and sensitive LC-ESI-MS of gangliosides, Journal of Chromatography B, vol.947, issue.948, pp.947-948, 2014.
DOI : 10.1016/j.jchromb.2013.11.025

K. Ikeda and R. Taguchi, Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrom, Rapid Communications in Mass Spectrometry, vol.51, issue.20, pp.2957-65, 2010.
DOI : 10.1016/j.chroma.2008.01.075

Z. Tsui, Q. Chen, M. Thomas, M. Samuel, and Z. Cui, A method for profiling gangliosides in animal tissues using electrospray ionization???tandem mass spectrometry, Analytical Biochemistry, vol.341, issue.2, pp.251-259, 2005.
DOI : 10.1016/j.ab.2005.03.036

A. Zamfir, Z. Vukelic, L. Bindila, J. Peter-katalinic, R. Almeida et al., Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum, Journal of the American Society for Mass Spectrometry, vol.5, issue.11, pp.1649-57, 2004.
DOI : 10.1007/BF01049915

A. Zamfir, Z. Vukelic, and J. Peter-katalinic, A capillary electrophoresis and off-line capillary electrophoresis/electrospray ionization-quadrupole time of flight-tandem mass spectrometry approach for ganglioside analysis, 17<2894::AID- ELPS2894>3.0.CO;2-Q PMID, pp.2894-903, 2002.
DOI : 10.1002/1522-2683(200209)23:17<2894::AID-ELPS2894>3.0.CO;2-Q

K. Ikeda, T. Shimizu, and R. Taguchi, Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring, Journal of Lipid Research, vol.1184, issue.12, pp.2678-89, 2008.
DOI : 10.1016/j.bbagen.2007.09.016

Z. Vukelic, S. Kalanj-bognar, M. Froesch, L. Bindila, B. Radic et al., Human gliosarcoma-associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization, Glycobiology, vol.17, issue.5, pp.504-519, 2007.
DOI : 10.1093/glycob/cwm012

URL : https://academic.oup.com/glycob/article-pdf/17/5/504/2228491/cwm012.pdf

A. Zamfir, D. Fabris, F. Capitan, C. Munteanu, Z. Vukelic et al., Profiling and sequence analysis of gangliosides in human astrocytoma by high-resolution mass spectrometry, Analytical and Bioanalytical Chemistry, vol.15, issue.3, pp.7321-7356, 2013.
DOI : 10.1016/j.jasms.2004.08.002

S. Ngamukote, M. Yanagisawa, T. Ariga, S. Ando, and R. Yu, Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains, Journal of Neurochemistry, vol.101, issue.6, pp.2327-2368, 2007.
DOI : 10.1038/35097593

C. Dubois, J. Magnani, G. Grunwald, S. Spitalnik, G. Trisler et al., Monoclonal antibody 18B8, which detects synapse-associated antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer), J Biol Chem, vol.261, issue.8, pp.3826-3856, 1986.

R. Yu and M. Yanagisawa, Glycosignaling in neural stem cells: involvement of glycoconjugates in signal transduction modulating the neural stem cell fate, Journal of Neurochemistry, vol.5, issue.s1, pp.39-46, 2007.
DOI : 10.1042/0264-6021:3550465

S. Sonnino and V. Chigorno, Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1469, issue.2, pp.63-77, 2000.
DOI : 10.1016/S0005-2736(00)00210-8

M. Holm and J. Mansson, Differences in sphingosine and fatty acid patterns of the major gangliosides of bovine retina, FEBS Letters, vol.19, issue.3, pp.261-263, 1974.
DOI : 10.1007/978-1-4757-6570-0_34

M. Holm and J. Mansson, Gangliosides of bovine optic nerve, FEBS Letters, vol.7, issue.1-2, pp.159-61, 1974.
DOI : 10.1016/0014-5793(74)80067-0

L. Lauritzen, H. Hansen, M. Jorgensen, and K. Michaelsen, The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina, Progress in Lipid Research, vol.40, issue.1-2, pp.1-94, 2001.
DOI : 10.1016/S0163-7827(00)00017-5

K. Simons and D. Toomre, Lipid rafts and signal transduction, Nature Reviews Molecular Cell Biology, vol.1, issue.1, pp.31-40, 2000.
DOI : 10.1038/35036052

S. Sonnino, L. Mauri, V. Chigorno, and A. Prinetti, Gangliosides as components of lipid membrane domains, Glycobiology, vol.17, issue.1, pp.1-13, 2007.
DOI : 10.1093/glycob/cwl052

S. Sonnino, A. Prinetti, L. Mauri, V. Chigorno, and G. Tettamanti, Dynamic and Structural Properties of Sphingolipids as Driving Forces for the Formation of Membrane Domains, Chemical Reviews, vol.106, issue.6, pp.2111-2136, 2006.
DOI : 10.1021/cr0100446

A. Todeschini and S. Hakomori, Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1780, issue.3, pp.421-454, 2008.
DOI : 10.1016/j.bbagen.2007.10.008

P. Palestini, M. Allietta, S. Sonnino, G. Tettamanti, T. Thompson et al., Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1235, issue.2, pp.221-251, 1995.
DOI : 10.1016/0005-2736(95)80008-4