S. Chattopadhyay, B. Das, A. Bera, D. Dasgupta, and C. Dasgupta, ribosomes, Biochemical Journal, vol.300, issue.3, pp.717-738, 1994.
DOI : 10.1042/bj3000717

D. Das, A. Das, D. Samanta, J. Ghosh, S. Dasgupta et al., Role of the ribosome in protein folding, Biotechnology Journal, vol.292, issue.8, pp.999-1009, 2008.
DOI : 10.1016/S0167-4838(98)00179-4

S. Pechmann, F. Willmund, and J. Frydman, The Ribosome as a Hub for Protein Quality Control, Molecular Cell, vol.49, issue.3
DOI : 10.1016/j.molcel.2013.01.020

A. Basu, D. Samanta, A. Bhattacharya, A. Das, D. Das et al., Protein folding following synthesis in vitro and in vivo: Association of newly synthesized protein with 50S subunit of E. coli ribosome, Biochemical and Biophysical Research Communications, vol.366, issue.2, pp.592-599, 2008.
DOI : 10.1016/j.bbrc.2007.11.142

M. Blondel, F. Soubigou, J. Evrard, P. Nguyen, N. Hasin et al., Protein Folding Activity of the Ribosome is involved in, Yeast Prion Propagation. Sci Rep, vol.6, p.32117, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394774

S. Chattopadhyay, S. Pal, D. Pal, D. Sarkar, S. Chandra et al., Protein folding in Escherichia coli: role of 23S ribosomal RNA, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1429, issue.2, pp.293-301, 1999.
DOI : 10.1016/S0167-4838(98)00179-4

Y. Pang, S. Kurella, C. Voisset, D. Samanta, D. Banerjee et al., The Antiprion Compound 6-Aminophenanthridine Inhibits the Protein Folding Activity of the Ribosome by Direct Competition, Journal of Biological Chemistry, vol.235, issue.26, pp.19081-19090, 2013.
DOI : 10.1016/j.ymeth.2010.12.002

D. Samanta, D. Mukhopadhyay, S. Chowdhury, J. Ghosh, S. Pal et al., Protein Folding by Domain V of Escherichia coli 23S rRNA: Specificity of RNA-Protein Interactions, Journal of Bacteriology, vol.190, issue.9, pp.3344-52, 2008.
DOI : 10.1128/JB.01800-07

S. Pal, S. Chandra, S. Chowdhury, D. Sarkar, A. Ghosh et al., Complementary Role of Two Fragments of Domain V of 23 S Ribosomal RNA in Protein Folding, Journal of Biological Chemistry, vol.22, issue.46, pp.32771-32778, 1999.
DOI : 10.1093/nar/26.4.887

S. Mondal, B. Pathak, S. Ray, C. Barat, S. Bach et al., Impact of P-Site tRNA and Antibiotics on Ribosome Mediated Protein Folding: Studies Using the Escherichia coli Ribosome, PLoS ONE, vol.1, issue.66, pp.101293-131075, 2003.
DOI : 10.1371/journal.pone.0101293.s004

N. Oumata, P. Nguyen, V. Beringue, F. Soubigou, Y. Pang et al., The Toll-Like Receptor Agonist Imiquimod Is Active against Prions, PLoS ONE, vol.37, issue.8, pp.1981-1996, 2008.
DOI : 10.1371/journal.pone.0072112.s002

URL : http://doi.org/10.1371/journal.pone.0072112

G. Jones and M. Tuite, Chaperoning prions: the cellular machinery for propagating an infectious protein?, BioEssays, vol.13, issue.8, pp.823-855, 2005.
DOI : 10.1128/MCB.19.11.7751

F. Gloge, A. Becker, G. Kramer, and B. Bukau, Co-translational mechanisms of protein maturation, Current Opinion in Structural Biology, vol.24, pp.24-33, 2014.
DOI : 10.1016/j.sbi.2013.11.004

C. Woese, &. Harper, . Row, A. Poole, and D. Penny, The genetic code the molecularbasis for genetic expression Relics from the RNA world, Jeffares DC J Mol Evol, vol.46, pp.18-36, 1967.

P. Nissen, J. Hansen, N. Ban, P. Moore, and T. Steitz, The Structural Basis of Ribosome Activity in Peptide Bond Synthesis, Science, vol.289, issue.5481, pp.920-950, 2000.
DOI : 10.1126/science.289.5481.920

M. Krupkin, D. Matzov, H. Tang, M. Metz, R. Kalaora et al., A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.2, issue.9, pp.2972-2980, 2011.
DOI : 10.1101/cshperspect.a003483

S. Reis, Y. Pang, N. Vishnu, C. Voisset, H. Galons et al., Mode of action of the antiprion drugs 6AP and GA on ribosome assisted protein folding, Biochimie, vol.93, issue.6, pp.1047-54, 2011.
DOI : 10.1016/j.biochi.2011.03.002

K. Mace, R. Gillet, S. Horowitz, M. Gray, J. U. Bardwell et al., Origins of tmRNA: the missing link in the birth of protein synthesis? Harish A, Caetano-Anolles G. Ribosomal history reveals origins of modern protein synthesis Do nucleic acids moonlight as molecular chaperones?, Nucleic Acids Res PLoS One Nucleic Acids Res, vol.44, issue.44, pp.8041-514835, 2012.

M. Reidy and D. Masison, Yeast Prions Help Identify and Define Chaperone Interaction Networks, Current Pharmaceutical Biotechnology, vol.15, issue.11, pp.1008-1026, 2014.
DOI : 10.2174/1389201015666141103021035

J. Hines, X. Li, Z. Du, T. Higurashi, L. Li et al., [SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone System Activity, PLoS Genetics, vol.20, issue.2, pp.1001309-1001325, 2011.
DOI : 10.1371/journal.pgen.1001309.s005

C. Schwimmer and D. Masison, Antagonistic Interactions between Yeast [PSI+] and [URE3] Prions and Curing of [URE3] by Hsp70 Protein Chaperone Ssa1p but Not by Ssa2p, Molecular and Cellular Biology, vol.22, issue.11, pp.3590-3598, 2002.
DOI : 10.1128/MCB.22.11.3590-3598.2002

Y. Chernoff, G. Newnam, J. Kumar, K. Allen, and A. Zink, ] Prion, Molecular and Cellular Biology, vol.19, issue.12, pp.8103-8115, 1999.
DOI : 10.1128/MCB.19.12.8103

D. Kiktev, M. Melomed, C. Lu, G. Newnam, and Y. Chernoff, Feedback control of prion formation and propagation by the ribosome-associated chaperone complex, Molecular Microbiology, vol.14, issue.3, pp.621-653, 2015.
DOI : 10.1083/jcb.201201074

R. Linden, V. Martins, M. Prado, M. Cammarota, I. Izquierdo et al., Physiology of the Prion Protein, Physiological Reviews, vol.88, issue.2, pp.673-728, 2008.
DOI : 10.1152/physrev.00007.2007

R. Goold, S. Rabbanian, L. Sutton, R. Andre, P. Arora et al., Rapid cell-surface prion protein conversion revealed using a novel cell system Prion infection of epithelial Rov cells is a polarized event, Nat Commun J Virol, vol.2, issue.78, pp.7148-52, 2004.

S. Godsave, H. Wille, P. Kujala, D. Latawiec, S. Dearmond et al., Cryo-Immunogold Electron Microscopy for Prions: Toward Identification of a Conversion Site, Journal of Neuroscience, vol.28, issue.47, pp.12489-99, 2008.
DOI : 10.1523/JNEUROSCI.4474-08.2008

Z. Marijanovic, A. Caputo, V. Campana, and C. Zurzolo, Identification of an Intracellular Site of Prion Conversion, PLoS Pathogens, vol.38, issue.4, p.1000426, 2009.
DOI : 10.1371/journal.ppat.1000426.s009

URL : https://hal.archives-ouvertes.fr/pasteur-00396879

Y. Yim, B. Park, R. Yadavalli, X. Zhao, E. Eisenberg et al., The multivesicular body is the major internal site of prion conversion, Journal of Cell Science, vol.128, issue.7, pp.1434-1477, 2015.
DOI : 10.1242/jcs.165472

M. Miesbauer, A. Rambold, K. Winklhofer, and J. Tatzelt, Targeting of the prion protein to the cytosol: mechanisms and consequences, Curr Issues Mol Biol, vol.12, pp.109-127, 2010.

S. Martin-lanneree, T. Hirsch, J. Hernandez-rapp, S. Halliez, J. Vilotte et al., PrP(C) from stem cells to cancer Prion protein: orchestrating neurotrophic activities, Front Cell Dev Biol Curr Issues Mol Biol, vol.2, issue.12, pp.63-86, 2010.

S. Halliez, B. Passet, S. Martin-lanneree, J. Hernandez-rapp, H. Laude et al., To develop with or without the prion protein The prion protein is critical for DNA repair and cell survival after genotoxic stress Smith HL, Mallucci GR. The unfolded protein response: mechanisms and therapy of neurodegeneration, Front Cell Dev Biol Nucleic Acids Res Brain Mays CE J Clin Invest, vol.2, issue.124, pp.58-42904, 2014.

P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nature Reviews Molecular Cell Biology, vol.4, issue.4, pp.301-308, 2010.
DOI : 10.1038/ncb1901

URL : https://hal.archives-ouvertes.fr/hal-01183206

B. Frost and M. Diamond, Prion-like mechanisms in neurodegenerative diseases, Nature Reviews Neuroscience, vol.106, pp.155-164, 2010.
DOI : 10.1111/j.1552-6569.2003.tb00171.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648341

M. Goedert, F. Clavaguera, and M. Tolnay, The propagation of prion-like protein inclusions in neurodegenerative diseases, Trends in Neurosciences, vol.33, issue.7, pp.317-342, 2010.
DOI : 10.1016/j.tins.2010.04.003

N. Barbezier, A. Chartier, Y. Bidet, A. Buttstedt, C. Voisset et al., Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy, EMBO Molecular Medicine, vol.14, issue.1, pp.35-49, 2011.
DOI : 10.1093/hmg/ddi395

URL : https://hal.archives-ouvertes.fr/hal-00575087