J. Joubes, S. Raffaele, B. Bourdenx, C. Garcia, J. Laroche-traineau et al., The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling, Plant Mol Biol, vol.67, pp.547-566, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01607787

A. A. Millar and L. Kunst, Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme, Plant J, vol.12, pp.121-131, 1997.

B. J. Blacklock and J. G. Jaworski, Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases, Biochem Biophys Res Commun, vol.346, pp.583-590, 2006.

F. Beaudoin, X. Wu, F. Li, R. P. Haslam, J. E. Markham et al., Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase, Plant Physiol, vol.150, pp.1174-1191, 2009.

L. Bach, L. V. Michaelson, R. Haslam, Y. Bellec, L. Gissot et al., The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development, Proc Natl Acad Sci U S A, vol.105, pp.14727-14731, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02664902

V. Denic and J. S. Weissman, A molecular caliper mechanism for determining very long-chain fatty acid length, Cell, vol.130, pp.663-677, 2007.

K. Gable, S. Garton, J. A. Napier, and T. M. Dunn, Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system, J Exp Bot, vol.55, pp.543-545, 2004.

H. Zheng, O. Rowland, and L. Kunst, Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis, Plant Cell, vol.17, pp.1467-1481, 2005.

E. Muhammad, O. Reish, Y. Ohno, T. Scheetz, A. Deluca et al., Congenital myopathy is caused by mutation of HACD1, Hum Mol Genet, vol.22, pp.5229-5265, 2013.

M. Pele, L. Tiret, J. L. Kessler, S. Blot, and J. J. Panthier, SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs, Hum Mol Genet, vol.14, pp.1417-1427, 2005.

G. Ianiri, R. Abhyankar, A. Kihara, and A. Idnurm, Phs1 and the synthesis of very long chain Fatty acids are required for ballistospore formation, PLoS One, vol.9, p.105147, 2014.

C. Oh, D. A. Toke, S. Mandala, and C. E. Martin, ELO2 and ELO3, Homologues of theSaccharomyces cerevisiae ELO1 Gene, Function in Fatty Acid Elongation and Are Required for Sphingolipid Formation, J Biol Chem, vol.272, pp.17376-17384, 1997.

J. A. Park, T. W. Kim, S. K. Kim, W. T. Kim, and H. S. Pai, Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana, FEBS Lett, vol.579, pp.4459-4464, 2005.

J. J. Reina-pinto, D. Voisin, S. Kurdyukov, A. Faust, R. P. Haslam et al., Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis Epidermis Induces Cell Death and Suggests a Critical Role for Phospholipase A2 in This Process, Plant Cell, vol.21, pp.1252-1272, 2009.

A. A. Millar, M. Wrischer, and L. Kunst, Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology, Plant Cell, vol.10, pp.1889-1902, 1998.

F. Roudier, L. Gissot, F. Beaudoin, R. Haslam, L. Michaelson et al., Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis, Plant Cell, vol.22, pp.364-375, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856101

J. E. Markham, D. Molino, L. Gissot, Y. Bellec, K. Hématy et al., Sphingolipids containing verylong-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis, Plant Cell, vol.23, pp.2362-78, 2011.

L. Bach, L. Gissot, J. Marion, F. Tellier, P. Moreau et al., Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana, J Cell Sci, vol.124, pp.3223-3234, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00855927

T. Nobusawa and M. Umeda, Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana, Genes Cells, vol.17, pp.709-719, 2012.

D. Molino, E. Van-der-giessen, L. Gissot, K. Hématy, J. Marion et al., Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis, Biochim Biophys Acta. Elsevier B.V, vol.1841, pp.1422-1430, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204151

J. D. Faure, P. Vittorioso, V. Santoni, V. Fraisier, E. Prinsen et al., The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation, Development, vol.125, pp.909-918, 1998.

Y. Bellec, Y. Harrar, C. Butaeye, S. Darnet, C. Bellini et al., Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis, Plant J, vol.32, pp.713-722, 2002.

R. E. Pruitt, J. P. Vielle-calzada, S. E. Ploense, U. Grossniklaus, and S. J. Lolle, FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme, Proc Natl Acad Sci U S A, vol.97, pp.1311-1317, 2000.

Y. Harrar, Y. Bellec, C. Bellini, and J. D. Faure, Hormonal control of cell proliferation requires PASTICCINO genes, Plant Physiol, vol.132, pp.1217-1227, 2003.

T. Nobusawa, Y. Okushima, N. Nagata, M. Kojima, H. Sakakibara et al., Synthesis of very-longchain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation, PLoS Biol, vol.11, p.1001531, 2013.

K. Obara, R. Kojima, and A. Kihara, Effects on vesicular transport pathways at the late endosome in cells with limited very long-chain fatty acids, J Lipid Res, vol.54, pp.831-873, 2013.

L. Yu, P. Castillo, L. Mnaimneh, S. Hughes, T. R. Brown et al., A survey of essential gene function in the yeast cell division cycle, Mol Biol Cell, vol.17, pp.4736-4747, 2006.

M. Schuldiner, S. R. Collins, N. J. Thompson, V. Denic, A. Bhamidipati et al., Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile, Cell, vol.123, pp.507-519, 2005.

A. Kihara, H. Sakuraba, M. Ikeda, A. Denpoh, and Y. Igarashi, Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation, J Biol Chem, vol.283, pp.11199-11209, 2008.

T. M. Haslam and L. Kunst, Extending the story of very-long-chain fatty acid elongation, Plant Sci. Elsevier Ireland Ltd, vol.210, pp.93-107, 2013.

R. B. Franke, I. Dombrink, and L. Schreiber, Suberin goes genomics: use of a short living plant to investigate a long lasting polymer, Front Plant Sci, vol.3, p.4, 2012.

S. B. Lee, S. J. Jung, Y. S. Go, H. U. Kim, J. K. Kim et al., Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress, Plant J, vol.60, pp.462-475, 2009.

S. Trenkamp, W. Martin, and K. Tietjen, Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides, Proc Natl Acad Sci U S A, vol.101, pp.11903-11908, 2004.

M. P. Agbaga, R. S. Brush, M. N. Mandal, K. Henry, M. H. Elliott et al., Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids, Proc Natl Acad Sci U S A, vol.105, pp.12843-12848, 2008.

Y. Ohno, S. Suto, M. Yamanaka, Y. Mizutani, S. Mitsutake et al., ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis, Proc Natl Acad Sci U S A, vol.107, pp.18439-18444, 2010.

M. Minet, M. E. Dufour, and F. Lacroute, Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs, Plant J, vol.2, pp.417-422, 1992.

S. Mnaimneh, A. P. Davierwala, J. Haynes, J. Moffat, W. T. Peng et al., Exploration of essential gene functions via titratable promoter alleles, Cell, vol.118, pp.31-44, 2004.

C. Janke, M. M. Magiera, N. Rathfelder, C. Taxis, S. Reber et al., A versatile toolbox for PCRbased tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes, Yeast, vol.21, pp.947-962, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02262410

R. D. Gietz, R. H. Schiestl, A. R. Willems, and R. A. Woods, Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast, vol.11, pp.355-360, 1995.

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J Biosci Bioeng, vol.104, pp.34-41, 2007.

R. Gutierrez, J. J. Lindeboom, A. R. Paredez, A. Emons, and D. W. Ehrhardt, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nat Cell Biol, vol.11, pp.797-806, 2009.

T. Murashige and F. Skoog, A revised medium for rapid growth and bioassays with to-bacco tissue cultures, Physiol Plant, vol.15, pp.473-497, 1962.

Y. Li, F. Beisson, M. Pollard, and J. Ohlrogge, Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation, Phytochemistry, vol.67, pp.904-915, 2006.

T. R. Larson and I. A. Graham, A novel technique for the sensitive quantification of acyl CoA esters from plant tissues, Plant J, vol.25, pp.115-125, 2001.

C. A. Haynes, J. C. Allegood, K. Sims, E. W. Wang, M. C. Sullards et al., Quantitation of fatty acyl-coenzyme As in mammalian cells by liquid chromatography-electrospray ionization tandem mass spectrometry, J Lipid Res, vol.49, pp.1113-1125, 2008.

J. Van-leene, J. Hollunder, D. Eeckhout, G. Persiau, E. Van-de-slijke et al., Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana, Mol Syst Biol, vol.6, p.397, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203927

T. Czechowski, M. Stitt, T. Altmann, M. K. Udvardi, and W. R. Scheible, Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis, Plant Physiol, vol.139, pp.5-17, 2005.

J. E. Markham, J. Li, E. B. Cahoon, and J. G. Jaworski, Plant sphingolipids: separation and identification of major sphingolipid classes from leaves, J Biol Chem, vol.281, pp.22684-22694, 2006.