H. M. Alvarez and A. Steinbuchel, Triacylglycerols in prokaryotic microorganisms, Appl. Microbiol. Biot, vol.60, pp.367-376, 2002.

H. M. Alvarez, F. Mayer, D. Fabritius, and A. Steinbuchel, Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630, Arch. Microbiol, vol.165, pp.377-386, 1996.

S. P. Antai and D. L. Crawford, Degradation of softwood, hardwood, and grass lignocelluloses by two streptomyces strains, Appl. Environ. Microb, vol.42, pp.378-80, 1981.

A. Arabolaza, E. Rodriguez, S. Altabe, H. Alvarez, and H. Gramajo, Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor, Appl. Environ. Microbiol, vol.74, pp.2573-2582, 2008.

A. Arabolaza, M. Angelo, S. Comba, and H. Gramajo, FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor, Mol. Microbiol, vol.78, pp.47-63, 2010.

J. Blazeck, A. Hill, and L. Liu, Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production, Nat. Commun, vol.5, p.3131, 2014.

E. Boon, P. C. Struik, F. M. Engels, and J. W. Cone, Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode, NJAS-Wagen. J. Life Sci, vol.59, pp.13-23, 2012.

S. Caparrós, J. Ariza, F. López, J. A. Nacimiento, G. Garrote et al., Hydrothermal treatment and ethanol pulping of sunflower stalks, Bioresource Technol, vol.99, pp.1368-1372, 2008.

S. Comba, S. Menendez-bravo, A. Arabolaza, and H. Gramajo, Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor, Microb. Cell. Fact, vol.12, p.9, 2013.

F. Coze, F. Gilard, G. Tcherkez, M. J. Virolle, and A. Guyonvarch, Carbon-flux distribution within Streptomyces coelicolor metabolism: A comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146, PLoS One, vol.8, p.84151, 2013.

D. L. Crawford, Lignocellulose decomposition by selected streptomyces strains, Appl. Environ. Microbiol, vol.35, pp.1041-1045, 1978.

J. R. Davis and J. K. Sello, Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds, Appl. Microbiol. Biot, vol.86, pp.921-929, 2010.

J. R. Davis, L. A. Goodwin, and T. Woyke, Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete, J. Bact, vol.194, pp.2396-2397, 2012.

C. W. Dence and S. Y. Lin, The determination of lignin, Methods in Lignin Chemistry, pp.33-61, 1992.

A. Deniset-besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications, J. Phys. Chem. Let.t, vol.5, pp.654-658, 2014.

L. A. Garay, K. L. Boundy-mills, and J. B. German, Accumulation of high-value lipids in single-cell microorganisms: A mechanistic approach and future perspectives, J. Agr. Food. Chem, vol.62, pp.2709-2727, 2014.

A. Guerra, J. P. Elissetche, and M. Norambuena, Influence of lignin structural features on eucalyptus globulus kraft pulping, Ind. Eng. Chem. Res, vol.47, pp.8542-8549, 2008.

H. G. Jung and M. D. Casler, Maize stem tissues, Crop. Sci, vol.46, pp.1793-1800, 2006.

T. Dulermo, OCL 2016, vol.23, p.202

K. E. Kang, G. T. Jeong, and D. H. Park, Pretreatment of rapeseed straw by sodium hydroxide, Bioproc. Biosyst. Eng, vol.35, pp.705-713, 2012.

M. Kosa and A. J. Ragauskas, Bioconversion of lignin model compounds with oleaginous Rhodococci, Appl. Microbiol. Biot, vol.93, pp.891-900, 2012.

K. Kurosawa, S. J. Wewetzer, and A. J. Sinskey, Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production, Biotechnol. Biofuels, vol.6, p.134, 2013.

C. Lapierre, B. Pollet, and C. Rolando, New insights into the molecular architecture of hardwood lignins by chemical degradative methods, Res. Chem. Intermed, vol.21, pp.397-412, 1995.

L. Marechal, P. Decottignies, P. Marchand, and C. H. , Comparative proteomic analysis of streptomyces lividans wildtype and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis, Appl. Environ. Microb, vol.79, pp.5907-5917, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003374

Y. Liu, C. Zhang, and X. Shen, Microorganism lipid droplets and biofuel development, BMB. Rep, vol.46, pp.575-581, 2013.

S. L. Mathews, J. Pawlak, and A. M. Grunden, Bacterial biodegradation and bioconversion of industrial lignocellulosic streams, Appl. Microbiol. Biotechnol, vol.99, pp.2939-2954, 2015.

M. Mousavi, S. M. Hosseini, S. Z. Resalati, H. Mahdavi, S. Garmaroody et al., Papermaking potential of rapeseed straw, a new agricultural-based fiber source, J. Clean. Prod, vol.52, pp.420-424, 2013.

V. Menon and M. Rao, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Prog. Energy. Combust, vol.38, pp.522-550, 2012.

H. S. Mood, A. H. Golfeshan, and M. Tabatabaei, Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renew. Sustain. Energy Rev, vol.27, pp.77-93, 2013.

S. Octave and D. Thomas, Biorefinery: Toward an industrial metabolism, Biochimie, vol.91, pp.659-64, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01740605

E. R. Olukoshi and N. M. Packter, Importance of stored triacylglycerols in Streptomyces: Possible carbon source for antibiotics, Microbiology, vol.140, pp.931-943, 1994.

C. Somerville, H. Youngs, C. Taylor, S. C. Davis, and S. P. Long, Feedstocks for Lignocellulosic Biofuels. Science, vol.329, pp.790-792, 2010.

T. Vetrovsky, K. T. Steffen, and P. Baldrian, Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria, PLoS One, vol.9, p.89108, 2014.

X. Xiong, X. Wang, and S. Chen, Engineering of a xylose metabolic pathway in Rhodococcus strains, Appl. Environ. Microbiol, vol.78, pp.5483-5491, 2012.

Y. Zhang, T. Culhaoglu, and B. Pollet, Impact of lignin structure and cell wall reticulation on maize cell wall degradability, J. Agr. Food. Chem, vol.59, pp.10129-10135, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000978

X. B. Zhao, L. H. Zhang, and D. H. Liu, Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose, Biofuels Bioprod. Biorefining, vol.6, pp.465-482, 2012.

A. L. Ziebell, J. G. Barb, and S. Sandhu, Sunflower as a biofuels crop: An analysis of lignocellulosic chemical properties, Biomass. Bioenergy, vol.59, pp.208-217, 2013.

T. Dulermo, F. Coze, M. Virolle, V. Méchin, S. Baumberger et al., Bioconversion of agricultural lignocellulosic residues into branched-chain fatty acids using Streptomyces lividans, OCL, vol.2016, issue.2, p.202
URL : https://hal.archives-ouvertes.fr/hal-01563914