H. Abramovi? and A. V. , Physico-chemical properties, composition and oxidative stability of camelina sativa oil, Food Technol. Biotechnol, vol.43, pp.63-70, 2005.

H. Abramovi?, B. Butinar, and V. Nikoliè, Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage, Food Chem, vol.104, pp.903-909, 2007.

A. Beilstein, M. A. Kellogg, and E. A. , Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview, Plant System. Evol, vol.259, pp.89-120, 2006.

D. An and M. C. Suh, Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa, Plant Biotechnol. Rep, vol.9, pp.137-148, 2015.

J. M. Augustin, Y. Higashi, X. Feng, and T. M. Kutchan, Production of mono-and sesquiterpenes in Camelina sativa oilseed, Planta, vol.242, pp.693-708, 2015.

A. E. Aziza, N. Quezada, and G. Cherian, Antioxidative effect of dietary Camelina meal in fresh, stored, or cooked broiler chicken meat, Poultry Sci, vol.89, pp.2711-2718, 2010.

S. Bansal and T. P. Durrett, Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids, Biochimie, vol.120, pp.9-16, 2016.

S. Baud, M. S. Mendoza, A. To, E. Harscoet, L. Lepiniec et al., WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis, Plant J, vol.50, pp.825-838, 2007.

J. G. Bell, J. Pratoomyot, and F. Strachan, Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils, Aquaculture, vol.306, pp.225-232, 2010.

M. B. Betancor, M. Sprague, and O. Sayanova, Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): Effects on tissue fatty acid composition, histology and gene expression, Aquaculture, vol.444, pp.1-12, 2015.

M. B. Betancor, M. Sprague, S. Usher, O. Sayanova, P. J. Campbell et al., A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish, Sci. Rep, vol.5, p.8104, 2015.

A. Bonjean, L. Goffic, and F. , La cameline -Camelina sativa (L.) Crantz ? : une opportunité pour l'agriculture et l'industrie européennes. Oilseeds and fats, Crops and Lipids, vol.6, pp.28-35, 1999.

M. Borghi and D. Y. Xie, Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL, Planta, vol.243, pp.549-561, 2015.

, Addendum II: Terms and Conditions for Confined Research Field Trials of Camelina (Camelina sativa), 2012.

J. Dossier, M. Faure, and . Tepfer, OCL 2015, vol.23, p.503

, The Biology of Camelina sativa (L.) Crantz (Camelina), 2014.

A. Cernac and C. Benning, WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis, Plant J, vol.40, pp.575-585, 2004.

K. D. Chapman and J. B. Ohlrogge, Compartmentation of triacylglycerol accumulation in plants, J. Biol. Chem, vol.287, pp.2288-2294, 2012.

C. Chen, A. Bekkerman, R. K. Afshar, and K. Neill, Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa, Ind. Crops Prod, vol.71, pp.114-121, 2015.

J. G. Crowley and A. Frohlich, Factors affecting the composition and use of camelina, Teagasc publication 1 901138, vol.66, p.6, 1998.

J. Dalal, H. Lopez, and N. B. Vasani, A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa, Biotechnology for Biofuels, vol.8, p.175, 2015.

J. Degenhardt, T. G. Köllner, and J. Gershenzon, Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants, Phytochemistry, vol.70, pp.1621-1637, 2009.

F. Domergue, A. Abbadi, and E. Heinz, Relief for fish stocks: Oceanic fatty acids in transgenic oilseeds, Trends Plant Sci, vol.10, pp.112-116, 2005.

F. Domergue, A. Abbadi, U. Zähringer, H. Moreau, and E. Heinz, In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri, Biochem. J, vol.389, pp.483-490, 2005.

T. P. Durrett, D. D. Mcclosky, T. A. Ohlrogge, J. Pollard, and M. , A Distinct DGAT ith sn-3 Acetyltransferase Activity that Synthesizes Unusual, Reduced-Viscosity Oils in Euonymus and Transgenic Seeds, Proc. Natl. Acad. Sci. USA, vol.107, pp.9464-9469, 2010.

D. N. Eidhin, J. Burke, and D. O'beirne, Oxidative stability of omega3-rich camelina oil and camelina oil-based spread compared with plant and fish oils and sunflower spread, J. Food Sci, vol.68, pp.345-353, 2003.

A. Fröhlich and B. Rice, Evaluation of Camelina sativa oil as a feedstock for biodiesel production, Ind. Crops Prod, vol.21, pp.25-31, 2005.

A. Gehringer, W. Friedt, W. Luhs, R. J. Snowdon, and W. Lu, Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa), Genome, vol.49, pp.1555-1563, 2006.

R. W. Gesch, D. W. Archer, and M. T. Berti, Dual cropping winter camelina with soybean in the northern corn belt, Agronomy J, vol.106, pp.1735-1745, 2014.

K. Ghamkhar, J. Croser, N. Aryamanesh, M. Campbell, N. Kon'kova et al., Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses, Genome, vol.53, pp.558-567, 2010.

J. H. Groeneveld and A. M. Klein, Pollination of two oil-producing plant species: Camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) double-cropping in Germany, GCB Bioenergy, vol.6, pp.242-251, 2014.

S. O. Guy, D. J. Wysocki, and W. F. Schillinger, Camelina: Adaptation and performance of genotypes, Field Crops Res, vol.155, pp.224-232, 2014.

R. P. Haslam, O. Sayanova, H. J. Kim, E. B. Cahoon, and J. A. Napier, Synthetic Redesign of Plant Lipid Metabolism, Plant J, 2016.

M. Heilmann, T. Iven, K. Ahmann, E. Hornung, S. Stymne et al., Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes, J. Lipid Res, vol.53, pp.2153-2161, 2012.

P. J. Horn, J. E. Silva, and D. Anderson, Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles, Plant J, vol.76, pp.138-150, 2013.

R. Hrastar, M. G. Petrisic, N. Ogrinc, and I. J. Kosir, Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication, J. Agric. Food Chem, vol.57, pp.579-585, 2009.

D. Huai, Y. Zhang, C. Zhang, E. B. Cahoon, and Y. Zhou, Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in Camelina sativa, PLoS ONE, vol.10, pp.1-16, 2015.

C. Hutcheon, R. F. Ditt, and M. Beilstein, Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes, BMC Plant Biol, vol.10, p.233, 2010.

T. Iven, E. Hornung, M. Heilmann, and I. Feussner, Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil, Plant Biotechnol. J, pp.252-259, 2015.

S. Julié-galau, Y. Bellec, J. Faure, and M. Tepfer, Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM camelina, Transgenic Res, vol.23, pp.67-74, 2014.

S. Kagale, C. Koh, and J. Nixon, The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure, Nature Commun, vol.5, p.3706, 2014.

J. Kang, A. R. Snapp, and C. Lu, Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa, Plant Physiol. Biochem, vol.49, pp.223-229, 2011.

R. Keshavarz-afshar, Y. A. Mohammed, and C. Chen, Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen, Energy, vol.91, pp.1057-1063, 2015.

N. Kim, Y. Li, and X. S. Sun, Epoxidation of Camelina sativa oil and peel adhesion properties, Ind. Crops Prod, vol.64, pp.1-8, 2015.

H. J. Kim, J. E. Silva, H. S. Vu, K. Mockaitis, J. W. Nam et al., Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds, J. Exp. Botany, vol.66, pp.4251-4265, 2015.

K. D. Lardizabal, J. G. Metz, T. Sakamoto, W. C. Hutton, M. R. Pollard et al., Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis, Plant Physiol, vol.122, pp.645-655, 2000.

M. Li, S. C. Bahn, and C. Fan, Patatin-Related Phospholipase pPLAIII d Increases Seed Oil Content with Long-Chain Fatty Acids, Plant Physiol, vol.162, pp.39-51, 2013.

M. Li, F. Wei, A. Tawfall, M. Tang, A. Saettele et al., Overexpression of patatin-related phospholipase AIII d altered plant growth and increased seed oil content in camelina, Plant Biotech. J, vol.13, pp.766-778, 2015.

Y. Li and X. S. Sun, Camelina oil derivatives and adhesion properties, Ind. Crops Prod, vol.73, pp.73-80, 2015.

C. Liang, X. Liu, S. Yiu, and B. L. Lim, De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing, BMC Genomics, vol.14, p.146, 2013.

J. Liu, W. Hua, G. Zhan, F. Wei, X. Wang et al., Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus, Plant Physiol. Biochem, vol.48, pp.9-15, 2010.

J. Liu, A. Rice, K. Mcglew, and V. Shaw, Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value, Plant Biotechnol. J, pp.858-865, 2015.

J. Liu, H. Tjellström, and K. Mcglew, Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa, Ind. Crops Prod, vol.65, pp.259-268, 2015.

J. Faure and M. Tepfer, OCL 2015, vol.23, p.503

C. Lu and J. Kang, Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation, Plant Cell. Rep, vol.27, pp.273-278, 2008.

M. R. Malik, W. Yang, and N. Patterson, Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds, Plant Biotechnol. J, vol.13, pp.675-688, 2015.

A. Manca, P. Pecchia, S. Mapelli, P. Masella, and I. Galasso, Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits, Genet. Resour. Crop Evol, vol.60, pp.1223-1236, 2013.

S. L. Martin, C. A. Sauder, T. James, K. W. Cheung, F. M. Razeq et al., Sexual hybridization between Capsella bursapastoris (L.) Medik (?) and Camelina sativa (L.) Crantz (?) (Brassicaceae), Plant Breeding, vol.134, pp.212-220, 2015.

J. S. Mclaren and X. S. Sun, Can camelina compete as a feedstock for biobased products?, INFORM, vol.26, pp.632-634, 2015.

S. Mudalkar, R. Golla, S. Ghatty, and A. R. Reddy, De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers, Plant Mol. Biol, vol.84, pp.159-171, 2014.

J. A. Napier, The production of unusual fatty acids in transgenic plants, Ann. Rev. Plant Biol, vol.58, pp.295-319, 2007.

J. A. Napier, R. P. Haslam, F. Beaudoin, and E. B. Cahoon, Understanding and manipulating plant lipid composition: Metabolic engineering leads the way, Curr. Opin. Plant Biol, vol.19, pp.68-75, 2014.

H. T. Nguyen, H. Park, K. L. Koster, R. E. Cahoon, H. Nguyen et al., Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds, Plant Biotechnol. J, vol.13, pp.38-50, 2015.

H. T. Nguyen, J. E. Silva, and R. Podicheti, Camelina seed transcriptome: a tool for meal and oil improvement and translational research, Plant Biotechnol. J, vol.11, pp.759-769, 2013.

H. Nosal, J. Nowicki, M. Warza?a, E. Nowakowska-bogdan, and M. Zarêbska, Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol, Progress in Organic Coatings, vol.86, pp.59-70, 2015.

P. G. Peiretti and G. Meineri, Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth, Anim. Feed Sci. Technol, vol.133, pp.341-350, 2007.

J. R. Petrie, P. Shrestha, and S. Belide, Metabolic engineering Camelina sativa with fish oil-like levels of DHA, PLoS ONE, vol.9, pp.1-8, 2014.

A. L. Pilgeram, D. C. Sands, and D. Boss, Camelina sativa, A Montana Omega-3 and Fuel Crop, Proceedings of the sixth National Symposium, Creating Markets for Economic Development of New Crops and New Uses, pp.129-131, 2007.

B. Pouvreau, S. Baud, and V. Vernoud, Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis, Plant Physiol, vol.156, pp.674-686, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000162

R. Choudhury, S. Riesselman, A. J. Pandey, and S. , Constitutive or seed-specific overexpression of Arabidopsis G-protein ? subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa, Plant Biotechnol. J, vol.12, pp.49-59, 2014.

N. Ruiz-lopez, R. P. Haslam, S. L. Usher, J. A. Napier, and O. Sayanova, Reconstitution of EPA and DHA biosynthesis in Arabidopsis: Iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants, Metab. Eng, vol.17, pp.30-41, 2013.

N. Ruiz-lopez, R. P. Haslam, J. A. Napier, and O. Sayanova, Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop, Plant J, vol.77, pp.198-208, 2014.

N. Ruiz-lopez, R. P. Haslam, S. Usher, J. A. Napier, and O. Sayanova, An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds, Plant Biotechnol. J, pp.1264-1275, 2015.

O. Sayanova, N. Ruiz-lopez, R. P. Haslam, and J. A. Napier, The role of Delta6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants, Plant Biotechnol. J, vol.10, pp.195-206, 2012.

G. Seguin-swartz, C. Eynck, R. K. Gugel, S. E. Strelkov, C. Y. Olivier et al., Diseases of Camelina sativa (false flax), Canadian J. Plant Pathol.-Revue Canadienne de Phytopathologie, vol.31, pp.375-386, 2009.

G. Seguin-swartz, J. A. Nettleton, C. Sauder, S. I. Warwick, and R. K. Gugel, Hybridization between Camelina sativa (L.) Crantz (false flax) and North American Camelina species, Plant Breed, vol.132, pp.390-396, 2013.

D. R. Shonnard, L. Williams, and T. N. Kalnesc, Camelina-Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels, vol.29, pp.382-392, 2010.

R. Singh, V. Bollina, and E. E. Higgins, Single-nucleotide polymorphism identification and genotyping in Camelina sativa, Mol. Breed, vol.35, 2015.

N. Tejera, D. Vauzour, and M. B. Betancor, A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice 1 -3, J. Nutr, pp.227-235, 2016.

F. Toulemonde, Camelina sativa, l 'or végétal du, Bronze et du Fer. Anthropobotanica 1, vol.1, pp.3-14, 2010.

J. Vollmann and C. Eynck, Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering, Biotechnol. J, vol.10, pp.525-535, 2015.

J. Vollmann, H. Grausgruber, G. Stift, V. Dryzhyruk, and T. Lelley, Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism, Plant Breed, vol.124, pp.446-453, 2005.

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol, vol.32, pp.1-6, 2014.

X. L. Wu, Z. H. Liu, Z. H. Hu, and R. Z. Huang, BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed, J. Integr. Plant Biol, vol.56, pp.582-593, 2014.

Y. Zhang, L. Yu, K. Yung, D. Leung, F. Sun et al., Overexpression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield, Biotechnol. Biofuels, vol.5, p.19, 2012.

L. Zhu, F. Krens, and M. A. Smith, Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production, Sci. Rep, vol.6, p.22181, 2016.

J. Zubr, Oil-seed crop: Camelina sativa, Ind. Crops Prod, vol.6, pp.113-119, 1997.