K. Coleman, Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, vol.81, issue.1-2, pp.29-44, 1997.
DOI : 10.1016/S0016-7061(97)00079-7

W. J. Parton, J. W. Stewart, and C. Cole, Dynamics of C, N, P and S in grassland soils: a model, Biogeochemistry, vol.77, issue.2, pp.109-131, 1988.
DOI : 10.1038/scientificamerican0970-44

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nature Geoscience, vol.39, issue.5, pp.336-340, 2010.
DOI : 10.1038/ngeo846

. Cheng, Synthesis and modeling perspectives of rhizosphere priming, New Phytologist, vol.63, issue.1, pp.31-44, 2014.
DOI : 10.1016/j.soilbio.2013.03.027

URL : http://onlinelibrary.wiley.com/doi/10.1111/nph.12440/pdf

. Louis, Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source, PLOS ONE, vol.6, issue.8, p.161251, 2016.
DOI : 10.1371/journal.pone.0161251.s004

URL : https://hal.archives-ouvertes.fr/hal-01367818

E. B. Graham, Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?, Frontiers in Microbiology, vol.3, issue.497, 2016.
DOI : 10.1038/nclimate1951

B. S. Griffiths, Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship, Oikos, vol.90, issue.2, pp.279-294, 2000.
DOI : 10.1034/j.1600-0706.2000.900208.x

B. S. Griffiths, An examination of the biodiversity???ecosystem function relationship in arable soil microbial communities, Soil Biology and Biochemistry, vol.33, issue.12-13, pp.1713-1722, 2001.
DOI : 10.1016/S0038-0717(01)00094-3

S. Juarez, N. Nunan, A. Duday, V. Pouteau, and C. Chenu, Soil carbon mineralisation responses to alterations of microbial diversity and soil structure, Biology and Fertility of Soils, vol.226, issue.7, pp.939-948, 2013.
DOI : 10.1007/s00217-006-0548-x

URL : https://hal.archives-ouvertes.fr/hal-01567152

U. N. Nielsen, E. Ayres, D. H. Wall, and R. D. Bardgett, Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships, European Journal of Soil Science, vol.41, issue.1, pp.105-116, 2011.
DOI : 10.1016/j.soilbio.2008.12.028

S. Wertz, Maintenance of soil functioning following erosion of microbial diversity, Environmental Microbiology, vol.39, issue.12, pp.2162-2169, 2006.
DOI : 10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00127101

S. Wertz, Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance, Environmental Microbiology, vol.61, issue.9, pp.2211-2219, 2007.
DOI : 10.1073/pnas.96.4.1463

URL : https://hal.archives-ouvertes.fr/halsde-00155947

P. Nannipieri, Microbial diversity and soil functions, European Journal of Soil Science, vol.143, issue.4, pp.655-670, 2003.
DOI : 10.1007/s003740050533

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.472.4368

M. S. Strickland, C. Lauber, N. Fierer, and M. A. Bradford, Testing the functional significance of microbial community composition, Ecology, vol.25, issue.2, pp.441-451, 2009.
DOI : 10.1016/j.tree.2006.04.003

P. Salonius, Metabolic capabilities of forest soil microbial populations with reduced species diversity, Soil Biology and Biochemistry, vol.13, issue.1, pp.1-10, 1981.
DOI : 10.1016/0038-0717(81)90094-8

H. Setälä and M. A. Mclean, Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi, Oecologia, vol.69, issue.1, pp.98-107, 2004.
DOI : 10.1890/0012-9615(1999)069[0535:PRIPGV]2.0.CO;2

M. Bonkowski and J. Roy, Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms, Oecologia, vol.13, issue.2, pp.232-240, 2005.
DOI : 10.1007/s00442-004-1790-1

. Philippot, Loss in microbial diversity affects nitrogen cycling in soil, The ISME Journal, vol.65, issue.8, pp.1609-1619, 2013.
DOI : 10.1186/1471-2105-12-198

URL : http://www.nature.com/ismej/journal/v7/n8/pdf/ismej201334a.pdf

J. A. Dungait, D. W. Hopkins, A. S. Gregory, and A. P. Whitmore, Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biology, vol.58, issue.6, pp.1781-1796, 2012.
DOI : 10.1111/j.1365-2389.2006.00855.x

M. W. Schmidt, Persistence of soil organic matter as an ecosystem property, Nature, vol.40, issue.7367, pp.49-56, 2011.
DOI : 10.1021/es0608085

S. Juarez, Effects of different soil structures on the decomposition of native and??added organic carbon, European Journal of Soil Biology, vol.58, pp.81-90, 2013.
DOI : 10.1016/j.ejsobi.2013.06.005

URL : https://hal.archives-ouvertes.fr/hal-01567153

D. Or, B. F. Smets, J. M. Wraith, A. Dechesne, and S. P. Friedman, Physical constraints affecting bacterial habitats and activity in unsaturated porous media ??? a review, Advances in Water Resources, vol.30, issue.6-7, pp.1505-1527, 2007.
DOI : 10.1016/j.advwatres.2006.05.025

K. Killham, M. Amato, and J. N. Ladd, Effect of substrate location in soil and soil pore-water regime on carbon turnover, Soil Biology and Biochemistry, vol.25, issue.1, pp.57-62, 1993.
DOI : 10.1016/0038-0717(93)90241-3

L. S. Ruamps, N. Nunan, and C. Chenu, Microbial biogeography at the soil pore scale, Soil Biology and Biochemistry, vol.43, issue.2, pp.280-286, 2011.
DOI : 10.1016/j.soilbio.2010.10.010

URL : https://hal.archives-ouvertes.fr/bioemco-00577735

D. T. Strong, H. De-wever, R. Merckx, and S. Recous, Spatial location of carbon decomposition in the soil pore system, European Journal of Soil Science, vol.61, issue.4, pp.739-750, 2004.
DOI : 10.1016/S0167-1987(99)00106-3

. Constancias, Microscale evidence for a high decrease of soil bacterial density and diversity by cropping, Agronomy for Sustainable Development, vol.6, issue.5, pp.1-10, 2014.
DOI : 10.1371/journal.pone.0019950

URL : https://hal.archives-ouvertes.fr/hal-01234825

A. Blaud, Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw, Applied Soil Ecology, vol.53, pp.1-9, 2012.
DOI : 10.1016/j.apsoil.2011.11.005

URL : https://hal.archives-ouvertes.fr/hal-00999935

J. K. Carson, Low Pore Connectivity Increases Bacterial Diversity in Soil, Applied and Environmental Microbiology, vol.76, issue.12, pp.3936-3942, 2010.
DOI : 10.1128/AEM.03085-09

URL : http://aem.asm.org/content/76/12/3936.full.pdf

H. E. Reed and J. B. Martiny, Testing the functional significance of microbial composition in natural communities, FEMS Microbiology Ecology, vol.62, issue.2, pp.161-170, 2007.
DOI : 10.1111/j.1574-6941.2007.00386.x

W. Xun, Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities, Soil Biology and Biochemistry, vol.90, pp.10-18, 2015.
DOI : 10.1016/j.soilbio.2015.07.018

B. S. Griffiths, Functional resilience of soil microbial communities depends on both soil structure and microbial community composition, Biology and Fertility of Soils, vol.304, issue.5, pp.745-754, 2008.
DOI : 10.2136/sssaj2003.1560

A. J. Franzluebbers, R. L. Haney, F. M. Hons, and D. A. Zuberer, Active fractions of organic matter in soils with different texture, Soil Biology and Biochemistry, vol.28, issue.10-11, pp.1367-1372, 1996.
DOI : 10.1016/S0038-0717(96)00143-5

J. Hassink, Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization, Soil Biology and Biochemistry, vol.26, issue.9, pp.1221-1231, 1994.
DOI : 10.1016/0038-0717(94)90147-3

F. E. Moyano, S. Manzoni, and C. Chenu, Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models, Soil Biology and Biochemistry, vol.59, pp.72-85, 2013.
DOI : 10.1016/j.soilbio.2013.01.002

C. Chenu and A. F. Plante, Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the 'primary organo-mineral complex', European Journal of Soil Science, vol.68, issue.4, pp.596-607, 2006.
DOI : 10.2136/sssaj2004.1540

URL : https://hal.archives-ouvertes.fr/bioemco-00176212

. Peth, Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography, Soil Biology and Biochemistry, vol.78, pp.189-194, 2014.
DOI : 10.1016/j.soilbio.2014.07.024

URL : https://hal.archives-ouvertes.fr/hal-01192498

P. Moldrup, Tortuosity, Diffusivity, and Permeability in the Soil Liquid and Gaseous Phases, Soil Science Society of America Journal, vol.65, issue.3, pp.613-623, 2001.
DOI : 10.2136/sssaj2001.653613x

A. Dechesne, Biodegradation in a Partially Saturated Sand Matrix: Compounding Effects of Water Content, Bacterial Spatial Distribution, and Motility, Environmental Science & Technology, vol.44, issue.7, pp.2386-2392, 2010.
DOI : 10.1021/es902760y

URL : https://hal.archives-ouvertes.fr/hal-00846242

H. Kim, The spatial distribution of exoenzyme activities across the soil micro-landscape, as measured in micro- and macro-aggregates, and ecosystem processes, Soil Biology and Biochemistry, vol.91, pp.258-267, 2015.
DOI : 10.1016/j.soilbio.2015.08.042

C. Pallud, Modification of Spatial Distribution of 2,4-Dichlorophenoxyacetic Acid Degrader Microhabitats during Growth in Soil Columns, Applied and Environmental Microbiology, vol.70, issue.5, pp.2709-2716, 2004.
DOI : 10.1128/AEM.70.5.2709-2716.2004

S. Manzoni, A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils, Soil Biology and Biochemistry, vol.73, pp.69-83, 2014.
DOI : 10.1016/j.soilbio.2014.02.008

T. Z. Lerch, N. Nunan, M. Dignac, C. Chenu, and A. Mariotti, Variations in microbial isotopic fractionation during soil organic matter decomposition, Biogeochemistry, vol.29, issue.1, pp.5-21, 2011.
DOI : 10.1016/S0038-0717(97)00062-X

URL : https://hal.archives-ouvertes.fr/bioemco-00542772

D. R. Zak, W. E. Holmes, N. W. Macdonald, and K. S. Pregitzer, Soil Temperature, Matric Potential, and the Kinetics of Microbial Respiration and Nitrogen Mineralization, Soil Science Society of America Journal, vol.63, issue.3, pp.575-584, 1999.
DOI : 10.2136/sssaj1999.03615995006300030021x

D. S. Jenkinson, The effects of biocidal treatments on metabolism in soil???IV. The decomposition of fumigated organisms in soil, Soil Biology and Biochemistry, vol.8, issue.3, pp.203-208, 1976.
DOI : 10.1016/0038-0717(76)90004-3

M. Kleber, Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity, Global Change Biology, vol.26, issue.2, pp.1097-1107, 2011.
DOI : 10.1016/j.orggeochem.2004.03.009

. Nunan, Metabolising old soil carbon: Simply a matter of simple organic matter?, Soil Biology and Biochemistry, vol.88, pp.128-136, 2015.
DOI : 10.1016/j.soilbio.2015.05.018

J. B. Hughes-martiny, Microbial biogeography: putting microorganisms on the map, Nature Reviews Microbiology, vol.70, issue.2, pp.102-112, 2006.
DOI : 10.1007/978-1-4615-6968-8_3

N. Fierer and R. B. Jackson, From the Cover: The diversity and biogeography of soil bacterial communities, Proc. Natl. Acad. Sci. 103, pp.626-631, 2006.

B. J. Cardinale, K. Nelson, and M. A. Palmer, Linking species diversity to the functioning of ecosystems: on the importance of environmental context, Oikos, vol.91, issue.1, pp.175-183, 2000.
DOI : 10.1034/j.1600-0706.2000.910117.x

N. P. Mcnamara, H. I. Black, N. A. Beresford, and N. R. Parekh, Effects of acute gamma irradiation on chemical, physical and biological properties of soils, Applied Soil Ecology, vol.24, issue.2, pp.117-132, 2003.
DOI : 10.1016/S0929-1393(03)00073-8

A. E. Berns, 4280 | DOI:10.1038/s41598-017-04485-z 53 Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy, Eur. J. Soil Sci, vol.7, issue.59, pp.540-550, 2008.

J. Postma, J. A. Van-veen, and S. Walter, Influence of different initial soil moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar Trifolii, Soil Biology and Biochemistry, vol.21, issue.3, pp.437-442, 1989.
DOI : 10.1016/0038-0717(89)90156-9

L. S. Ruamps, Regulation of soil organic C mineralisation at the pore scale, FEMS Microbiology Ecology, vol.86, issue.1, pp.26-35, 2013.
DOI : 10.1111/1574-6941.12078

URL : https://hal.archives-ouvertes.fr/hal-01567154

D. A. Wright, K. Killham, L. A. Glover, and J. Prosser, Role of Pore-Size Location in Determining Bacterial-Activity During Predation by Protozoa in Soil, Appl. Environ. Microbiol, vol.61, pp.3537-3543, 1995.

H. B. So and P. H. Nye, The effect of bulk density, water content and soil type on the diffusion of chloride in soil, Journal of Soil Science, vol.36, issue.4, pp.743-749, 1989.
DOI : 10.1111/j.1365-2389.1989.tb01314.x

. Ranjard, Characterization of Bacterial and Fungal Soil Communities by Automated Ribosomal Intergenic Spacer Analysis Fingerprints: Biological and Methodological Variability, Applied and Environmental Microbiology, vol.67, issue.10, pp.4479-4487, 2001.
DOI : 10.1128/AEM.67.10.4479-4487.2001

URL : https://hal.archives-ouvertes.fr/bioemco-00353796

T. V. Elzhov, K. M. Mullen, A. N. Spiess, B. Bolker, and . Minpack, lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.1-9, 2015.

S. Dray and A. B. Dufour, The ade4 package: implementing the duality diagram for ecologists, J. Stat. Soft, vol.22, pp.1-20, 2007.
DOI : 10.18637/jss.v022.i04

URL : https://hal.archives-ouvertes.fr/hal-00434575

P. Legendre and E. D. Gallagher, Ecologically meaningful transformations for ordination of species data, Oecologia, vol.129, issue.2, pp.271-280, 2001.
DOI : 10.1007/s004420100716