E. A. Afanasyeva, Chernozemy sredne-russkoi vozvishennosti, 1966.

W. Baisden, A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence, Global Biogeochemical Cycles, vol.60, issue.6, pp.10-1029, 1135.
DOI : 10.1016/0016-7037(96)00106-8

P. Barré, T. Eglin, B. T. Christensen, P. Ciais, S. Houot et al., Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments, Biogeosciences, vol.7, issue.11, pp.3839-385010, 2010.
DOI : 10.5194/bg-7-3839-2010

N. H. Batjes, Total carbon and nitrogen in the soils of the world, European Journal of Soil Science, vol.58, issue.2, pp.151-163, 1996.
DOI : 10.1007/978-1-4757-1915-4

M. C. Braakhekke, C. Beer, M. R. Hoosbeek, M. Reichstein, B. Kruijt et al., SOMPROF: A vertically explicit soil organic matter model, Ecological Modelling, vol.222, issue.10, pp.1712-1730, 2011.
DOI : 10.1016/j.ecolmodel.2011.02.015

S. Bruun, B. T. Christensen, I. K. Thomsen, E. S. Jensen, and L. S. Jensen, Modeling vertical movement of organic matter in a soil incubated for 41 years with 14C labeled straw, Soil Biology and Biochemistry, vol.39, issue.1, pp.368-371, 2007.
DOI : 10.1016/j.soilbio.2006.07.003

K. Coleman, D. S. Jenkinson, G. J. Crocker, P. R. Grace, J. Klir et al., Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, vol.81, issue.1-2, pp.81-110, 1997.
DOI : 10.1016/S0016-7061(97)00079-7

T. Decaëns, Macroecological patterns in soil communities, Global Ecology and Biogeography, vol.5, issue.3, pp.287-302, 2010.
DOI : 10.1890/060077.1

H. Dörr and K. Münnich, Downward movement of soil organic matter and its influence on trace element transport, Radiocarbon, pp.31-655, 1989.

A. Elzein and J. Balesdent, Mechanistic Simulation of Vertical Distribution of Carbon Concentrations and Residence Times in Soils, Soil Science Society of America Journal, vol.59, issue.5, pp.1328-1335, 1995.
DOI : 10.2136/sssaj1995.03615995005900050019x

X. Feng, J. C. Peterson, S. A. Quideau, R. A. Virginia, R. C. Graham et al., Distribution, accumulation, and fluxes of soil carbon in four monoculture lysimeters at San Dimas Experimental Forest, California, Geochimica et Cosmochimica Acta, vol.63, issue.9, pp.1319-1333, 1999.
DOI : 10.1016/S0016-7037(99)00048-4

S. Fontaine and S. Barot, Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation, Ecology Letters, vol.25, issue.10, pp.1075-1087, 2005.
DOI : 10.1016/0038-0717(93)90058-J

S. Fontaine, S. Barot, P. Barré, N. Bdioui, B. Mary et al., Stability of organic carbon in deep soil layers controlled by fresh carbon supply, and Zeng, N.: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, pp.277-280, 2006.
DOI : 10.1017/S0033822200003672

URL : https://hal.archives-ouvertes.fr/bioemco-00176100

G. Jr, H. G. Hwang, J. T. Fick, and G. W. , Model Evaluation by Comparison of Model-Based Predictions and Measured Values, Agron. J, vol.95, pp.1442-1446, 2003.

B. Guenet, K. Lenhart, J. Leloup, S. Giusti-miller, V. Pouteau et al., The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities, Geoderma, vol.170, pp.331-336, 2011.
DOI : 10.1016/j.geoderma.2011.12.002

P. R. Hirsch, L. M. Gilliam, S. P. Sohi, J. K. Williams, I. M. Clark et al., Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities, Soil Biology and Biochemistry, vol.41, issue.9, pp.2021-2024, 2009.
DOI : 10.1016/j.soilbio.2009.07.011

D. S. Jenkinson and K. Coleman, The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, European Journal of Soil Science, vol.34, issue.2, pp.400-413, 2008.
DOI : 10.1111/j.1365-2389.1991.tb00410.x

E. G. Jobbagy and R. B. Jackson, THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION, Ecological Applications, vol.10, issue.2, pp.423-436, 2000.
DOI : 10.1023/A:1005345429236

K. S. Kobayashi and M. U. Salam, Comparing simulated and measured values using mean squared deviation and its components
DOI : 10.1007/s100870050043

H. Lueken, W. L. Hutcheon, P. , and E. A. , The influence of nitrogen on the decomposition of crop residues in soil, Can, J. of Soil Sci, vol.42, pp.276-288, 1962.

S. Manzoni and A. Porporato, Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biology and Biochemistry, vol.41, issue.7, pp.1355-1379, 2009.
DOI : 10.1016/j.soilbio.2009.02.031

E. A. Mikhailova, R. B. Vassenev, I. I. Schwager, and S. J. Post, Cultivation Effects on Soil Carbon and Nitrogen Contents at Depth in the Russian Chernozem, Soil Science Society of America Journal, vol.64, issue.2, pp.738-745, 2000.
DOI : 10.2136/sssaj2000.642738x

O. 'brien, B. J. Stout, and J. D. , Movement and turnover of soil organic matter as indicated by carbon isotope measurements, Soil Biology and Biochemistry, vol.10, issue.4, pp.309-317, 1977.
DOI : 10.1016/0038-0717(78)90028-7

W. J. Parton, J. W. Stewart, C. , and C. V. , Dynamics of C, N, P and S in grassland soils: a model, Biogeochemistry, vol.77, issue.2, pp.109-131, 1988.
DOI : 10.1038/scientificamerican0970-44

M. Pettersson and E. Bååth, Temperature-dependent changes in the soil bacterial community in limed and unlimed soil, FEMS Microbiology Ecology, vol.60, issue.1, pp.13-21, 2003.
DOI : 10.1016/0038-0717(95)00100-X

R. Development and C. Team, A language and environment for statistical computing, R Foundation for Statistical Computing, 2010.

C. Rumpel and I. Kögel-knabner, Deep soil organic matter???a key but poorly understood component of terrestrial C cycle, Plant and Soil, vol.139, issue.7, pp.143-158, 2010.
DOI : 10.1017/S0033822200017598

C. Salomé, N. Nunan, V. Pouteau, T. Z. Lerch, and C. Chenu, Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms, Global Change Biology, vol.40, issue.1, pp.416-426, 2010.
DOI : 10.1111/j.1365-2486.2009.01884.x

M. Sanaullah, A. Chabbi, J. Leifeld, G. Bardoux, D. Billou et al., Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference?, Plant and Soil, vol.40, issue.1-2, pp.127-141, 2010.
DOI : 10.1007/s11104-010-0554-4

D. Santaren, P. Peylin, N. Viovy, C. , and P. , Optimizing a process-based ecosystem model with eddy-covariance flux measurements: A pine forest in southern France, Global Biogeochemical Cycles, vol.113, issue.3, pp.10-1029, 2007.
DOI : 10.1016/S0168-1923(02)00109-0

URL : https://hal.archives-ouvertes.fr/bioemco-00175968

D. S. Schimel, Terrestrial ecosystems and the carbon cycle, Global Change Biology, vol.45, issue.1, pp.77-91, 1995.
DOI : 10.1007/BF00002772

H. W. Schlesinger, Evidence from chronosequence studies for a low carbon-storage potential of soils, Nature, vol.348, issue.6298, pp.232-234, 1990.
DOI : 10.1038/348232a0

B. Guenet, Decomposition and transport mechanisms in accounting for SOC profiles Solving Differential Equations in R: Package deSolve, J. Stat. Softw, vol.33, pp.1-25, 2010.

G. S. Sparling, M. V. Cheschire, and C. M. Mundie, Effect of barley plants on the decomposition of 14C-labelled soil organic matter, Journal of Soil Science, vol.40, issue.1, pp.89-100, 1982.
DOI : 10.1111/j.1365-2389.1982.tb01750.x

A. Sugden, R. Stone, A. , and C. , Ecology in the Underworld, Science, vol.304, issue.5677, pp.1613-1613, 2004.
DOI : 10.1126/science.304.5677.1613

A. Tarantola, Inverse Problem Theory: Methods of Data Fitting and Model Parameter Estimation, 1987.

C. Tarnocai, J. G. Canadell, E. A. Schuur, P. Kuhry, G. Mazhitova et al., Soil organic carbon pools in the northern circum-polar permafrost region, Global Biogeochem. Cy, pp.10-1029, 2009.

N. A. Vasilyeva, C. Chenu, Z. N. Tyugai, and E. Y. Milanovskiy, Century scale C metastability in full Chernozem profiles under changed organic matter input and tillage, 2013.

B. V. Vinogradov, Aerospace studies of protected natural areas in the USSR, in: Conservation, science and society, Nat. Resour. Res., XXI, vol.2, pp.435-448, 1984.

M. Williams, Response of microbial communities to water stress in irrigated and drought-prone tallgrass prairie soils, Soil Biology and Biochemistry, vol.39, issue.11, pp.2750-2757, 2007.
DOI : 10.1016/j.soilbio.2007.05.025

J. Wu, P. C. Brookes, and D. S. Jenkinson, Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil, Soil Biology and Biochemistry, vol.25, issue.10, pp.1435-1441, 1993.
DOI : 10.1016/0038-0717(93)90058-J

Y. Wu, Y. Xiongsheng, W. Haizhen, D. Na, and X. Jianming, Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis, Journal of Soils and Sediments, vol.61, issue.2, pp.223-230, 2009.
DOI : 10.1007/s11368-009-0118-5

T. Wutzler and M. Reichstein, Colimitation of decomposition by substrate and decomposers – a comparison of model formulations, Biogeosciences, vol.5, issue.3, pp.749-75910, 2008.
DOI : 10.5194/bg-5-749-2008

J. G. Wynn, M. I. Bird, and V. N. Wong, Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia, Geochimica et Cosmochimica Acta, vol.69, issue.8, pp.1961-1973, 2005.
DOI : 10.1016/j.gca.2004.09.003

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, A limited memory algorithm for bound constrained optimisation, SIAM J. Sci. Stat. Comput, vol.16, pp.1190-1208, 1995.