C. Papi, F. Fascì-spurio, F. Rogai, A. Settesoldi, G. Margagnoni et al., Mucosal healing in inflammatory bowel disease: Treatment efficacy and predictive factors, Dig. Liver Dis, vol.45, pp.978-985, 2013.

M. Iacucci and S. Ghosh, Looking beyond symptom relief: Evolution of mucosal healing in inflammatory bowel disease, Therap. Adv. Gastroenterol, vol.4, pp.129-143, 2011.

G. Pineton-de-chambrun, L. Peyrin-biroulet, M. Lémann, and J. Colombel, Clinical implications of mucosal healing for the management of IBD, Nat. Rev. Gastroenterol. Hepatol, vol.7, pp.15-29, 2010.

A. J. Lucendo and L. C. De-rezende, Importance of nutrition in inflammatory bowel disease, World J. Gastroenterol, vol.15, pp.2081-2088, 2009.

J. Goh and C. A. O'morain, Nutrition and adult inflammatory bowel disease, Aliment. Pharmacol. Ther, vol.17, pp.307-320, 2003.

S. Massironi, R. E. Rossi, F. A. Cavalcoli, S. Della-valle, M. Fraquelli et al., Nutritional deficiencies in inflammatory bowel disease: Therapeutic approaches, Clin. Nutr, vol.32, pp.904-910, 2013.

A. Forbes, E. Goldesgeyme, and E. Paulon, Nutrition in inflammatory bowel disease, JPEN. J. Parenter. Enteral Nutr, vol.35, pp.571-580, 2011.

P. D. Han, A. Burke, R. N. Baldassano, J. L. Rombeau, and G. R. Lichtenstein, Nutrition and inflammatory bowel disease, Gastroenterol. Clin. N. Am, vol.28, pp.423-443, 1999.

A. Forbes, J. Escher, X. Hébuterne, S. K??k, Z. Krznaric et al., ESPEN guideline: Clinical nutrition in inflammatory bowel disease, Clin. Nutr, vol.36, pp.321-347, 2016.

R. E. Kleinman, R. N. Baldassano, A. Caplan, A. M. Griffiths, M. B. Heyman et al., Nutrition support for pediatric patients with inflammatory bowel disease: A clinical report of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, J. Pediatr. Gastroenterol. Nutr, vol.39, pp.15-27, 2004.

S. Reif, I. Klein, F. Lubin, M. Farbstein, A. Hallak et al., Pre-illness dietary factors in inflammatory bowel disease, Gut, vol.40, pp.754-760, 1997.

J. K. Hou and B. Abraham, El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature, Am. J. Gastroenterol, vol.106, pp.563-573, 2011.

R. Shoda, K. Matsueda, S. Yamato, and N. Umeda, Epidemiologic analysis of Crohn disease in Japan: Increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan, Am. J. Clin. Nutr, vol.63, pp.741-745, 1996.

P. Jantchou, S. Morois, F. Clavel-chapelon, M. Boutron-ruault, and F. Carbonnel, Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study, Am. J. Gastroenterol, vol.105, pp.2195-2201, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486175

C. E. Spooren, M. J. Pierik, M. P. Zeegers, E. J. Feskens, A. A. Masclee et al., Review article: The association of diet with onset and relapse in patients with inflammatory bowel disease, Aliment. Pharmacol. Ther, vol.38, pp.1172-1187, 2013.

A. Tragnone, D. Valpiani, F. Miglio, G. Elmi, G. Bazzocchi et al., Dietary habits as risk factors for inflammatory bowel disease, Eur. J. Gastroenterol. Hepatol, vol.7, pp.47-51, 1995.

C. Gaudichon, C. Bos, C. Morens, K. J. Petzke, F. Mariotti et al., Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirements, Gastroenterology, vol.123, pp.50-59, 2002.

J. A. Gibson, G. E. Sladen, and A. M. Dawson, Protein absorption and ammonia production: The effects of dietary protein and removal of the colon, Br. J. Nutr, vol.35, pp.61-65, 1976.

K. R. Silvester, S. A. Bingham, J. R. Pollock, J. H. Cummings, and I. K. O'neill, Effect of meat and resistant starch on fecal excretion of apparent N-nitroso compounds and ammonia from the human large bowel, Nutr. Cancer, vol.29, pp.13-23, 1997.

C. Gaudichon, S. Mahé, R. Benamouzig, C. Luengo, H. Fouillet et al., Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans, J. Nutr, vol.129, pp.890-895, 1999.

F. Mariotti, S. Mahé, R. Benamouzig, C. Luengo, S. Daré et al., Nutritional value of [15N]-soy protein isolate assessed from ileal digestibility and postprandial protein utilization in humans, J. Nutr, vol.129, pp.1992-1997, 1999.

X. Liu, J. Blouin, A. Santacruz, A. Lan, M. Andriamihaja et al., High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: The increased luminal bulk connection, Am. J. Physiol. Gastrointest. Liver Physiol, vol.307, pp.459-470, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173417

C. Mu, Y. Yang, Z. Luo, L. Guan, and W. Zhu, The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet, J. Nutr, vol.146, pp.474-483, 2016.

H. Sokol, B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-humarán et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proc. Natl. Acad. Sci, vol.105, pp.16731-16736, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00652961

L. Leu, R. K. Young, G. P. Hu, Y. Winter, J. Conlon et al., Dietary red meat aggravates dextran sulfate sodium-induced colitis in mice whereas resistant starch attenuates inflammation, Dig. Dis. Sci, vol.58, pp.3475-3482, 2013.

A. Lan, A. Blais, D. Coelho, J. Capron, M. Maarouf et al., Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase, Am. J. Physiol. Gastrointest. Liver Physiol, vol.311, pp.624-633, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01488439

P. Henderson, J. E. Van-limbergen, J. Schwarze, and D. C. Wilson, Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease, Inflamm. Bowel Dis, vol.17, pp.382-395, 2011.

K. Matsuoka and T. Kanai, The gut microbiota and inflammatory bowel disease, Semin. Immunopathol, vol.37, pp.47-55, 2015.

K. Machiels, M. Joossens, J. Sabino, V. De-preter, I. Arijs et al., A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis, Gut, vol.63, pp.1275-1283, 2014.

R. Thibault, F. Blachier, B. Darcy-vrillon, P. De-coppet, A. Bourreille et al., Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: A transport deficiency, Inflamm. Bowel Dis, vol.16, pp.684-695, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173382

C. V. Tudela, C. Boudry, F. Stumpff, J. R. Aschenbach, W. Vahjen et al., Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling, Br. J. Nutr, vol.113, pp.610-617, 2015.

R. B. Sartor and G. D. Wu, Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches, Gastroenterology, vol.152, pp.327-339, 2017.

V. De-preter, Metabolomics in the clinical diagnosis of inflammatory bowel disease, Dig. Dis, vol.33, pp.2-10, 2015.

J. R. Marchesi, E. Holmes, F. Khan, S. Kochhar, P. Scanlan et al., Rapid and noninvasive metabonomic characterization of inflammatory bowel disease, J. Proteome Res, vol.6, pp.546-551, 2007.

J. T. Bjerrum, Y. Wang, F. Hao, M. Coskun, C. Ludwig et al., Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals, Metabolomics, vol.11, pp.122-133, 2015.

L. Gall, G. Noor, S. O. Ridgway, K. Scovell, L. Jamieson et al., Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome, J. Proteome Res, vol.10, pp.4208-4218, 2011.

H. R. Williams, I. J. Cox, D. G. Walker, B. V. North, V. M. Patel et al., Characterization of inflammatory bowel disease with urinary metabolic profiling, Am. J. Gastroenterol, vol.104, pp.1435-1444, 2009.

C. E. Garner, S. Smith, B. De-lacy-costello, P. White, R. Spencer et al., Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease, FASEB J, vol.21, pp.1675-1688, 2007.

J. Levine, C. J. Ellis, J. K. Furne, J. Springfield, and M. D. Levitt, Fecal hydrogen sulfide production in ulcerative colitis, Am. J. Gastroenterol, vol.93, pp.83-87, 1998.

M. C. Pitcher, The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis, Gut, vol.46, pp.64-72, 2000.

F. Carbonero, A. C. Benefiel, A. H. Alizadeh-ghamsari, and H. R. Gaskins, Microbial pathways in colonic sulfur metabolism and links with health and disease, Front. Physiol, vol.3, p.448, 2012.

F. Blachier, A. Davila, S. Mimoun, P. Benetti, C. Atanasiu et al., Luminal sulfide and large intestine mucosa: Friend or foe?, Amino Acids, vol.39, pp.335-347, 2010.

C. Walton, D. P. Fowler, C. Turner, W. Jia, R. N. Whitehead et al., Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases, Inflamm. Bowel Dis, vol.19, pp.2069-2078, 2013.

V. De-preter, K. Machiels, M. Joossens, I. Arijs, C. Matthys et al., Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD, Gut, vol.64, pp.447-458, 2015.

M. Andriamihaja, A. Lan, M. Beaumont, M. Audebert, X. Wong et al., The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic, Biol. Med, vol.85, pp.219-227, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568625

M. Beaumont, M. Andriamihaja, A. Lan, N. Khodorova, M. Audebert et al., Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response. Free Radic, Biol. Med, vol.93, pp.155-164, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568610

B. Mouillé, E. Morel, V. Robert, G. Guihot-joubrel, and F. Blachier, Metabolic capacity for L-citrulline synthesis from ammonia in rat isolated colonocytes, Biochim. Biophys. Acta, vol.1427, pp.401-407, 1999.

B. Mouillé, V. Robert, and F. Blachier, Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion, Am. J. Physiol. Gastrointest. Liver Physiol, vol.287, pp.344-351, 2004.

S. U. Christl, H. D. Eisner, G. Dusel, H. Kasper, and W. Scheppach, Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: A potential role for these agents in the pathogenesis of ulcerative colitis, Dig. Dis. Sci, vol.41, pp.2477-2481, 1996.

H. Ichikawa and T. Sakata, Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive, J. Nutr, vol.128, pp.843-847, 1998.

X. Leschelle, M. Goubern, M. Andriamihaja, H. M. Blottière, E. Couplan et al., Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide, Biochim. Biophys. Acta, vol.1725, pp.201-212, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00101334

F. Blachier, A. M. Davila, R. Benamouzig, and D. Tome, Channelling of arginine in NO and polyamine pathways in colonocytes and consequences, Front. Biosci, vol.16, pp.1331-1343, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001463

N. Ijssennagger, C. Belzer, G. J. Hooiveld, J. Dekker, S. W. Van-mil et al., Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon, Proc. Natl. Acad. Sci, vol.112, pp.10038-10043, 2015.

N. Ijssennagger, R. Van-der-meer, and S. W. Van-mil, Sulfide as a Mucus Barrier-Breaker in Inflammatory Bowel Disease?, Trends Mol. Med, vol.22, pp.190-199, 2016.

R. Hughes, M. J. Kurth, V. Mcgilligan, H. Mcglynn, and I. Rowland, Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro, Nutr. Cancer, vol.60, pp.259-266, 2008.

Y. Shimada, M. Kinoshita, K. Harada, M. Mizutani, K. Masahata et al., Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon, PLoS ONE, vol.8, pp.1-10, 2013.

T. Bansal, R. C. Alaniz, T. K. Wood, and A. Jayaraman, The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation, Proc. Natl. Acad. Sci, vol.107, pp.228-233, 2010.

G. Boudry, A. Jamin, L. Chatelais, C. Gras-le-guen, C. Michel et al., Dietary protein excess during neonatal life alters colonic microbiota and mucosal response to inflammatory mediators later in life in female pigs, J. Nutr, vol.143, pp.1225-1232, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01594355

M. Venkatesh, S. Mukherjee, H. Wang, H. Li, K. Sun et al., Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4, Immunity, vol.41, pp.296-310, 2014.

T. Zelante, R. G. Iannitti, C. Cunha, A. De-luca, G. Giovannini et al., Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22, Immunity, vol.39, pp.372-385, 2013.

M. Levy, C. A. Thaiss, D. Zeevi, L. Dohnalová, G. Zilberman-schapira et al., Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling, Cell, vol.163, pp.1428-1443, 2015.

S. Ramasamy, S. Singh, P. Taniere, M. J. Langman, and M. C. Eggo, Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation, Am. J. Physiol. Gastrointest. Liver Physiol, vol.291, pp.288-296, 2006.

I. Arijs, W. Vanhove, P. Rutgeerts, F. Schuit, K. Verbeke et al., Decreased mucosal sulfide detoxification capacity in patients with Crohn's disease, Inflamm. Bowel Dis, vol.19, pp.70-72, 2013.

B. S. Ramakrishna, I. C. Roberts-thomson, P. R. Pannall, and W. E. Roediger, Impaired sulphation of phenol by the colonic mucosa in quiescent and active ulcerative colitis, Gut, vol.32, pp.46-49, 1991.

S. Mimoun, M. Andriamihaja, C. Chaumontet, C. Atanasiu, R. Benamouzig et al., Detoxification of H(2)S by differentiated colonic epithelial cells: Implication of the sulfide oxidizing unit and of the cell respiratory capacity, Antioxid. Redox Signal, vol.17, pp.1-10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00966772

X. Wong, C. Carrasco-pozo, E. Escobar, P. Navarrete, F. Blachier et al., Deleterious Effect of p-Cresol on Human Colonic Epithelial Cells Prevented by Proanthocyanidin-Containing Polyphenol Extracts from Fruits and Proanthocyanidin Bacterial Metabolites, J. Agric. Food Chem, vol.64, pp.3574-3583, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568614

C. E. Semrad, Use of parenteral nutrition in patients with inflammatory bowel disease, Gastroenterol. Hepatol, vol.8, pp.393-395, 2012.

B. J. Geerling, A. Badart-smook, R. W. Stockbrugger, and R. J. Brummer, Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls, Eur. J. Clin. Nutr, vol.54, pp.514-521, 2000.

D. Rigaud, L. A. Angel, M. Cerf, M. J. Carduner, J. C. Melchior et al., Mechanisms of decreased food intake during weight loss in adult Crohn's disease patients without obvious malabsorption, Am. J. Clin. Nutr, vol.60, pp.775-781, 1994.

D. Turner, A. Levine, J. C. Escher, A. M. Griffiths, R. K. Russell et al., Management of pediatric ulcerative colitis: Joint ECCO and ESPGHAN evidence-based consensus guidelines, J. Pediatr. Gastroenterol. Nutr, vol.55, pp.340-361, 2012.

W. M. Rand, P. L. Pellett, and V. R. Young, Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults 1-3. Am, J. Clin. Nutr, vol.77, pp.109-127, 2003.

A. Kornbluth and D. B. Sachar, Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee, Am. J. Gastroenterol, vol.105, pp.501-523, 2010.

C. Zallot, D. Quilliot, J. B. Chevaux, C. Peyrin-biroulet, R. M. Guéant-rodriguez et al., Dietary beliefs and behavior among inflammatory bowel disease patients, Inflamm. Bowel Dis, vol.19, pp.66-72, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01701168

A. Sturm and A. U. Dignass, Epithelial restitution and wound healing in inflammatory bowel disease, World J. Gastroenterol, vol.14, pp.348-353, 2008.

M. F. Neurath and S. P. Travis, Mucosal healing in inflammatory bowel diseases: A systematic review, Gut, vol.61, pp.1619-1635, 2012.

W. W. Wang, S. Y. Qiao, and D. F. Li, Amino acids and gut function, Amino Acids, vol.37, pp.105-110, 2009.

T. Hisamatsu, S. Okamoto, M. Hashimoto, T. Muramatsu, A. Andou et al., Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease, PLoS ONE, vol.7, 2012.

H. Zhang, C. A. Hu, J. Kovacs-nolan, and Y. Mine, Bioactive dietary peptides and amino acids in inflammatory bowel disease, Amino Acids, vol.47, pp.2127-2141, 2015.

M. Faure, C. Mettraux, D. Moennoz, J. Godin, J. Vuichoud et al., Corthésy-Theulaz, I. Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats, J. Nutr, vol.136, pp.1558-1564, 2006.

X. Liu, M. Beaumont, F. Walker, C. Chaumontet, M. Andriamihaja et al., Beneficial effects of an amino acid mixture on colonic mucosal healing in rats, Inflamm. Bowel Dis, vol.19, pp.2895-2905, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01186910

Z. Dai, G. Wu, and W. Zhu, Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health, Front. Biosci, vol.16, pp.1768-1786, 2011.

M. Coëffier, R. Marion-letellier, and P. Déchelotte, Potential for amino acids supplementation during inflammatory bowel diseases, Inflamm. Bowel Dis, vol.16, pp.518-524, 2010.

F. Blachier, C. Boutry, C. Bos, and D. Tomé, Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines, Am. J. Clin. Nutr, vol.90, pp.814-821, 2009.

B. Sido, C. Seel, A. Hochlehnert, R. Breitkreutz, and W. Dröge, Low intestinal glutamine level and low glutaminase activity in Crohn's disease: A rational for glutamine supplementation?, Dig. Dis. Sci, vol.51, pp.2170-2179, 2006.

F. Swaid, I. Sukhotnik, I. Matter, D. Berkowitz, C. Hadjittofi et al., Dietary glutamine supplementation prevents mucosal injury and modulates intestinal epithelial restitution following acetic acid induced intestinal injury in rats, Nutr. Metab, vol.10, 2013.

B. San-miguel, I. Crespo, N. A. Kretzmann, J. L. Mauriz, N. Marroni et al., Glutamine prevents fibrosis development in rats with colitis induced by 2,4,6-trinitrobenzene sulfonic acid, J. Nutr, vol.140, pp.1065-1071, 2010.

A. K. Akobeng, V. Miller, J. Stanton, A. M. Elbadri, and A. G. Thomas, Double-blind randomized controlled trial of glutamine-enriched polymeric diet in the treatment of active Crohn's disease, J. Pediatr. Gastroenterol. Nutr, vol.30, pp.78-84, 2000.

C. J. Kim, J. A. Kovacs-nolan, C. Yang, T. Archbold, M. Z. Fan et al., L-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis, J. Nutr. Biochem, vol.21, pp.468-475, 2010.

T. Shizuma, H. Mori, and N. Fukuyama, Protective effect of tryptophan against dextran sulfate sodium-induced experimental colitis, Turk. J. Gastroenterol, vol.24, pp.30-35, 2013.

T. Hashimoto, T. Perlot, A. Rehman, J. Trichereau, H. Ishiguro et al., ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation, Nature, vol.487, pp.477-481, 2012.

M. A. Ciorba, Indoleamine 2,3 dioxygenase in intestinal disease, Curr. Opin. Gastroenterol, vol.29, pp.146-452, 2013.

A. Al-drees and M. S. Khalil, Histological and immunohistochemical effects of L-arginine and silymarin on TNBS-induced inflammatory bowel disease in rats, Histol. Histopathol, vol.31, pp.1259-1270, 2016.

W. Ren, J. Yin, M. Wu, G. Liu, G. Yang et al., Serum amino acids profile and the beneficial effects of L-arginine or L-glutamine supplementation in dextran sulfate sodium colitis, PLoS ONE, vol.9, 2014.

M. E. Andrade, R. D. Santos, A. D. Soares, K. A. Costa, S. O. Fernandes et al., Pretreatment and Treatment With L-Arginine Attenuate Weight Loss and Bacterial Translocation in Dextran Sulfate Sodium Colitis, J. Parenter. Enter. Nutr, vol.40, pp.1131-1139, 2016.

L. A. Coburn, X. Gong, K. Singh, M. Asim, B. P. Scull et al., L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis, PLoS ONE, vol.7, 2012.

C. J. Kim, J. Kovacs-nolan, C. Yang, T. Archbold, M. Z. Fan et al., L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis, Biochim. Biophys. Acta, vol.1790, pp.1161-1169, 2009.

A. Andou, T. Hisamatsu, S. Okamoto, H. Chinen, N. Kamada et al., Dietary histidine ameliorates murine colitis by inhibition of proinflammatory cytokine production from macrophages, Gastroenterology, vol.136, pp.564-574, 2009.

I. Tsune, K. Ikejima, M. Hirose, M. Yoshikawa, N. Enomoto et al., Dietary glycine prevents chemical-induced experimental colitis in the rat, Gastroenterology, vol.125, pp.775-785, 2003.

Y. Mine and H. Zhang, Anti-inflammatory effects of poly-L-lysine in intestinal mucosal system mediated by calcium-sensing receptor activation, J. Agric. Food Chem, vol.63, pp.10437-10447, 2015.

S. Mercier, D. Breuillé, L. Mosoni, C. Obled, and P. Patureau-mirand, Chronic inflammation alters protein metabolism in several organs of adult rats, J. Nutr, vol.132, pp.1921-1928, 2002.

M. El-yousfi, D. Breuillé, I. Papet, S. Blum, M. André et al., Increased tissue protein synthesis during spontaneous inflammatory bowel disease in HLA-B27 rats, Clin. Sci, vol.105, pp.437-446, 2003.

S. D. Heys, K. G. Park, M. A. Mcnurlan, R. A. Keenan, J. D. Miller et al., Protein synthesis rates in colon and liver: Stimulation by gastrointestinal pathologies, Gut, vol.33, pp.976-981, 1992.