M. W. Foster, D. T. Hess, and J. S. Stamler, Protein S-nitrosylation in health and disease: a current perspective, Trends Mol. Med, vol.15, pp.391-404, 2009.

D. Giustarini, I. Dalle-donne, D. Tsikas, and R. Rossi, Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers, Crit. Rev. Clin. Lab. Sci, vol.46, pp.241-281, 2009.

E. Trushina and C. T. Mcmurray, Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases, Neuroscience, vol.145, pp.1233-1248, 2007.

Y. Xiong, J. D. Uys, K. D. Tew, and D. M. Townsend, S-Glutathionylation: From molecular mechanisms to health outcomes, Antioxid. Redox Signal, vol.15, pp.233-270, 2011.

K. J. Dietz, Redox signal integration: from stimulus to networks and genes, Physiol. Plant, vol.133, pp.459-468, 2008.

H. J. Forman, M. Maiorino, and F. Ursini, Signaling functions of reactive oxygen species, Biochemistry, vol.49, pp.835-842, 2010.

C. H. Foyer and G. Noctor, Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications, Antioxid. Redox Signal, vol.11, pp.861-905, 2009.

J. T. Hancock, The role of redox mechanisms in cell signalling, Mol. Biotechnol, vol.43, pp.162-166, 2009.

P. R. Castello, D. K. Woo, K. Ball, J. Wojcik, L. Liu et al., Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.8203-8208, 2008.

D. Spadaro, B. W. Yun, S. H. Spoel, C. Chu, Y. Q. Wang et al., The redox switch: dynamic regulation of protein function by cysteine modifications, Physiol. Plant, vol.138, pp.360-371, 2010.

J. Sun, M. , and E. , Protein S-nitrosylation and cardioprotection, Circ. Res, vol.106, pp.285-296, 2010.

D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, and J. S. Stamler, Protein S-nitrosylation: purview and parameters, Nat. Rev. Mol. Cell Biol, vol.6, pp.150-166, 2005.

J. Astier, S. Rasul, E. Koen, H. Manzoor, A. Besson-bard et al., S-Nitrosylation: an emerging post-translational protein modification in plants, Plant Sci, vol.181, pp.527-533, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01696281

D. Seth and J. S. Stamler, The SNO-proteome: causation and classifications, Curr. Opin. Chem. Biol, vol.15, pp.129-136, 2011.

M. W. Akhtar, C. R. Sunico, T. Nakamura, and S. A. Lipton, Redox regulation of protein function via cysteine S-nitrosylation and its relevance to neurodegenerative diseases, Int. J. Cell Biol, p.463756, 2012.

P. Anand and J. S. Stamler, Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease, J. Mol. Med, vol.90, pp.233-244, 2012.

B. Lima, M. T. Forrester, D. T. Hess, and J. S. Stamler, S-Nitrosylation in cardiovascular signaling, Circ. Res, vol.106, pp.633-646, 2010.

M. Moreau, C. Lindermayr, J. Durner, and D. F. Klessig, NO synthesis and signaling in plants-where do we stand?, Physiol. Plant, vol.138, pp.372-383, 2010.

A. Feechan, E. Kwon, B. W. Yun, Y. Wang, J. A. Pallas et al., A central role for S-nitrosothiols in plant disease resistance, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.8054-8059, 2005.

C. Lindermayr and J. Durner, S-Nitrosylation in plants: pattern and function, J. Proteomics, vol.73, pp.1-9, 2009.

M. Yu, B. W. Yun, S. H. Spoel, and G. J. Loake, A sleigh ride through the SNO: regulation of plant immune function by protein Snitrosylation, Curr. Opin. Plant Biol, vol.15, pp.424-430, 2012.

J. Astier, A. Besson-bard, O. Lamotte, J. Bertoldo, S. Bourque et al., Nitric oxide inhibits the ATPase activity of the chaperone-like AAA ? ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells, Biochem. J, vol.447, pp.249-260, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650312

C. Lindermayr, S. Sell, B. Müller, D. Leister, and J. Durner, Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide, Plant Cell, vol.22, pp.2894-2907, 2010.

Y. Tada, S. H. Spoel, K. Pajerowska-mukhtar, Z. Mou, J. Song et al., Plant immunity requires conformational changes (corrected) of NPR1 via S-nitrosylation and thioredoxins, Science, vol.321, pp.952-956, 2008.

Y. Q. Wang, A. Feechan, B. W. Yun, R. Shafiei, A. Hofmann et al., S-Nitrosylation of AtSABP3 antagonizes the expression of plant immunity, J. Biol. Chem, vol.284, pp.2131-2137, 2009.

B. W. Yun, A. Feechan, M. Yin, N. B. Saidi, T. Le-bihan et al., S-Nitrosylation of NADPH oxidase regulates cell death in plant immunity, Nature, vol.478, pp.264-268, 2011.

M. C. Romero-puertas, N. Campostrini, A. Mattè, P. G. Righetti, M. Perazzolli et al., Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response, Proteomics, vol.8, pp.1459-1469, 2008.

M. Benhar, M. T. Forrester, and J. S. Stamler, Protein denitrosylation: enzymatic mechanisms and cellular functions, Nat. Rev. Mol. Cell Biol, vol.10, pp.721-732, 2009.

N. Hogg, The biochemistry and physiology of S-Nitrosothiols, Annu. Rev. Pharmacol. Toxicol, vol.42, pp.585-600, 2002.

J. R. Pawloski, D. T. Hess, and J. S. Stamler, Export by red blood cells of nitric oxide bioactivity, Nature, vol.409, pp.622-626, 2001.

D. A. Mitchell and M. A. Marletta, Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine, Nat. Chem. Biol, vol.1, pp.154-158, 2005.

D. A. Mitchell, S. U. Morton, N. B. Fernhoff, and M. A. Marletta, Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.11609-11614, 2007.

C. Wu, T. Liu, W. Chen, S. Oka, C. Fu et al., Redox regulatory mechanism of transnitrosylation by thioredoxin, Mol. Cell. Proteomics, vol.9, pp.2262-2275, 2010.

T. Nakamura, L. Wang, C. C. Wong, F. L. Scott, B. P. Eckelman et al., Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death, Mol. Cell, vol.39, pp.184-195, 2010.

J. Qu, T. Nakamura, G. Cao, E. A. Holland, S. R. Mckercher et al., S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by ?-amyloid peptide, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.14330-14335, 2011.

M. D. Kornberg, N. Sen, M. R. Hara, K. R. Juluri, J. V. Nguyen et al., GAPDH mediates nitrosylation of nuclear proteins, Nat. Cell Biol, vol.12, pp.1094-1100, 2010.

D. Giustarini, A. Milzani, G. Aldini, M. Carini, R. Rossi et al., S-Nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione, Antioxid. Redox Signal, vol.7, pp.930-939, 2005.

M. Zaffagnini, M. Bedhomme, C. H. Marchand, J. R. Couturier, X. H. Gao et al., Glutaredoxin S12: unique properties for redox signaling, Antioxid. Redox Signal, vol.16, pp.17-32, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268394

L. Liu, A. Hausladen, M. Zeng, L. Que, J. Heitman et al., A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans, Nature, vol.410, pp.490-494, 2001.

M. Airaki, L. Sánchez-moreno, M. Leterrier, J. B. Barroso, J. M. Palma et al., Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/ MS, Plant Cell Physiol, vol.52, 2006.

I. Sliskovic, A. Raturi, and B. Mutus, Characterization of the Sdenitrosation activity of protein-disulfide isomerase, J. Biol. Chem, vol.280, pp.8733-8741, 2005.

D. Nikitovic and A. Holmgren, S-Nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide, J. Biol. Chem, vol.271, pp.19180-19185, 1996.

D. A. Stoyanovsky, Y. Y. Tyurina, V. A. Tyurin, D. Anand, D. N. Mandavia et al., Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols, J. Am. Chem. Soc, vol.127, pp.15815-15823, 2005.

M. W. Foster, L. Liu, M. Zeng, D. T. Hess, and J. S. Stamler, A genetic analysis of nitrosative stress, Biochemistry, vol.48, pp.792-799, 2009.

L. Liu, M. Zeng, A. Hausladen, J. Heitman, and J. S. Stamler, Protection from nitrosative stress by yeast flavohemoglobin, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.4672-4676, 2000.

M. T. Forrester, M. W. Foster, M. Benhar, and J. S. Stamler, Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic, Biol. Med, vol.46, pp.119-126, 2009.

L. Liu, Y. Yan, M. Zeng, J. Zhang, M. A. Hanes et al., Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock, Cell, vol.116, pp.617-628, 2004.

J. S. Paige, G. Xu, B. Stancevic, and S. R. Jaffrey, Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability, Chem. Biol, vol.15, pp.1307-1316, 2008.

J. M. Romero and O. A. Bizzozero, Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cord, J. Neurosci. Res, vol.87, pp.701-709, 2009.

M. Benhar, M. T. Forrester, D. T. Hess, and J. S. Stamler, Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins, Science, vol.320, pp.1050-1054, 2008.

M. Benhar, J. W. Thompson, M. A. Moseley, and J. S. Stamler, Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach, Biochemistry, vol.49, pp.6963-6969, 2010.

M. T. Forrester, J. W. Thompson, M. W. Foster, L. Nogueira, M. A. Moseley et al., Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture, Nat. Biotechnol, vol.27, pp.557-559, 2009.

C. Wu, A. M. Parrott, T. Liu, M. R. Jain, Y. Yang et al., Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach, J. Proteomics, vol.74, pp.2498-2509, 2011.

R. Sengupta and A. Holmgren, Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation, Antioxid. Redox Signal, vol.18, pp.259-269, 2013.

M. A. Sirover, On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control, Biochim. Biophys. Acta, vol.1810, pp.741-751, 2011.

C. Tristan, N. Shahani, T. W. Sedlak, and A. Sawa, The diverse functions of GAPDH: views from different subcellular compartments, 2011.

, Cell. Signal, vol.23, pp.317-323

M. R. Hara, N. Agrawal, S. F. Kim, M. B. Cascio, M. Fujimuro et al., S-Nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding, Nat. Cell Biol, vol.7, pp.665-674, 2005.

N. Sen, M. R. Hara, M. D. Kornberg, M. B. Cascio, B. I. Bae et al., Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis, Nat. Cell Biol, vol.10, pp.866-873, 2008.

M. Zaffagnini, L. Michelet, C. Marchand, F. Sparla, P. Decottignies et al., The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation, FEBS J, vol.274, pp.212-226, 2007.

M. Bedhomme, M. Adamo, C. H. Marchand, J. Couturier, N. Rouhier et al., Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro, Biochem. J, vol.445, pp.337-347, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268311

J. Couturier, C. S. Koh, M. Zaffagnini, A. M. Winger, J. M. Gualberto et al., Structure-function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site, J. Biol. Chem, vol.284, pp.9299-9310, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02545616

X. H. Gao, M. Zaffagnini, M. Bedhomme, L. Michelet, C. Cassier-chauvat et al., Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: kinetics and specificity in deglutathionylation reactions, FEBS Lett, vol.584, pp.2242-2248, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01183612

C. Lindermayr, G. Saalbach, and J. Durner, Proteomic identification of S-nitrosylated proteins in Arabidopsis, Plant Physiol, vol.137, pp.921-930, 2005.

S. Holtgrefe, J. Gohlke, J. Starmann, S. Druce, S. Klocke et al., Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications, Physiol. Plant, vol.133, pp.211-228, 2008.

A. Goyer, P. Decottignies, S. Lemaire, E. Ruelland, E. Issakidis-bourguet et al., The internal Cys-207 of sorghum leaf NADP-malate dehydrogenase can form mixed disulphides with thioredoxin, FEBS Lett, vol.444, pp.165-169, 1999.

J. P. Jacquot, R. Rivera-madrid, P. Marinho, M. Kollarova, P. Le-maréchal et al., Arabidopsis thaliana NADPH thioredoxin reductase. cDNA characterization and expression of the recombinant protein in Escherichia coli, J. Mol. Biol, vol.235, pp.1357-1363, 1994.

E. Gelhaye, N. Rouhier, and J. P. Jacquot, Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction, FEBS Lett, vol.555, pp.443-448, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02679184

E. Gelhaye, N. Rouhier, P. Laurent, P. E. Sautière, F. Martin et al., Isolation and characterization of an extended thioredoxin h from poplar, Physiol. Plant, vol.114, pp.165-171, 2002.

N. Rouhier, H. Unno, S. Bandyopadhyay, L. Masip, S. K. Kim et al., Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.7379-7384, 2007.

C. Sicard-roselli, S. Lemaire, J. P. Jacquot, V. Favaudon, C. Marchand et al., Thioredoxin Ch1 of Chlamydomonas reinhardtii displays an unusual resistance toward one-electron oxidation, Eur. J. Biochem, vol.271, pp.3481-3487, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02674215

S. R. Jaffrey and S. H. Snyder, The biotin switch method for the detection of S-nitrosylated proteins, Sci. STKE, p.1, 2001.

G. Biesecker, J. I. Harris, J. C. Thierry, J. E. Walker, and A. J. Wonacott, Sequence and structure of D-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus, Nature, vol.266, pp.328-333, 1977.

F. Talfournier, N. Colloc'h, J. P. Mornon, and G. Branlant, Comparative study of the catalytic domain of phosphorylating glyceraldehyde-3-phosphate dehydrogenases from bacteria and archaea via essential cysteine probes and site-directed mutagenesis, Eur. J. Biochem, vol.252, pp.447-457, 1998.

R. Kaneko and Y. Wada, Decomposition of protein nitrosothiols in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry, J. Mass Spectrom, vol.38, pp.526-530, 2003.

U. Srinivasan, P. A. Mieyal, and J. J. Mieyal, pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis, Biochemistry, vol.36, pp.3199-3206, 1997.

M. M. Gallogly and J. J. Mieyal, Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress, Curr. Opin. Pharmacol, vol.7, pp.381-391, 2007.

D. W. Starke, Y. Chen, C. P. Bapna, E. J. Lesnefsky, and J. J. Mieyal, Sensitivity of protein sulfhydryl repair enzymes to oxidative stress. Free Radic, Biol. Med, vol.23, pp.373-384, 1997.

J. Wang, E. S. Boja, W. Tan, E. Tekle, H. M. Fales et al., Reversible glutathionylation regulates actin polymerization in A431 cells, J. Biol. Chem, vol.276, pp.47763-47766, 2001.

K. A. Broniowska, A. R. Diers, N. ;. Hogg, and . S-nitrosoglutathione, Biochim. Biophys. Acta, vol.1830, pp.3173-3181, 2013.

G. Tanou, C. Job, L. Rajjou, E. Arc, M. Belghazi et al., Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity, Plant J, vol.60, pp.795-804, 2009.

G. Tanou, P. Filippou, M. Belghazi, D. Job, G. Diamantidis et al., Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress, Plant J, vol.72, pp.585-599, 2012.

J. K. Abat, A. K. Mattoo, and R. Deswal, S-Nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata-ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition, FEBS J, vol.275, pp.2862-2872, 2008.

I. Wawer, M. Bucholc, J. Astier, A. Anielska-mazur, J. Dahan et al., Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity, Biochem. J, vol.429, pp.73-83, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00491634

L. E. Anderson, M. R. Ringenberg, C. , and A. A. , Cytosolic glyceraldehyde-3-P dehydrogenase and the B subunit of the chloroplast enzyme are present in the pea leaf nucleus, Protoplasma, vol.223, pp.33-43, 2004.

M. Vescovi, M. Zaffagnini, M. Festa, P. Trost, F. Lo-schiavo et al., Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots, Plant Physiol, vol.162, pp.333-346, 2013.

S. Mohr, H. Hallak, A. De-boitte, E. G. Lapetina, and B. Brüne, Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem, vol.274, pp.9427-9430, 1999.

E. A. Konorev, B. Kalyanaraman, and N. Hogg, Modification of creatine kinase by S-nitrosothiols: S-nitrosation versus S-thiolation. Free Radic, Biol. Med, vol.28, pp.1671-1678, 2000.

S. J. Coles, P. Easton, H. Sharrod, S. M. Hutson, J. Hancock et al., S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation, Biochemistry, vol.48, pp.645-656, 2009.

R. Chakravarti and D. J. Stuehr, Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem, vol.287, pp.16179-16186, 2012.

J. L. Mazzola and M. A. Sirover, Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts, J. Neurosci. Res, vol.71, pp.279-285, 2003.

X. Wang, M. A. Sirover, A. , and L. E. , Pea chloroplast glyceraldehyde-3-phosphate dehydrogenase has uracil glycosylase activity, Arch. Biochem. Biophys, vol.367, pp.348-353, 1999.

S. Fermani, F. Sparla, G. Falini, P. L. Martelli, R. Casadio et al., Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.11109-11114, 2007.

L. Marri, M. Zaffagnini, V. Collin, E. Issakidis-bourguet, S. D. Lemaire et al., Prompt and easy activation by specific thioredoxins of Calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex, Mol. Plant, vol.2, pp.259-269, 2009.

S. Fermani, X. Trivelli, F. Sparla, A. Thumiger, M. Calvaresi et al., Conformational selection and folding-upon-binding of intrinsically disordered protein CP12 regulate photosynthetic enzymes assembly, J. Biol. Chem, vol.287, pp.21372-21383, 2012.