S. Forst, B. Dowds, N. Boemare, and E. Stackebrandt, SPP.:Bugs That Kill Bugs, Annual Review of Microbiology, vol.51, issue.1, pp.47-72, 1997.
DOI : 10.1146/annurev.micro.51.1.47

H. Goodrich-blair and D. Clarke, Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination, Molecular Microbiology, vol.55, issue.2, pp.260-268, 2007.
DOI : 10.1111/j.1365-2958.2007.05671.x

L. Lacey, D. Grzywacz, D. Shapiro-ilan, R. Frutos, M. Brownbridge et al., Insect pathogens as biological control agents: Back to the future, Journal of Invertebrate Pathology, vol.132, pp.1-41, 2015.
DOI : 10.1016/j.jip.2015.07.009

URL : http://gala.gre.ac.uk/13812/1/13812_GRZYWACZ_%28JnlInvPath_AAM_Accepted_17JUL2015_Available_online_27JUL2015%29.pdf

C. Nielsen-leroux, S. Gaudriault, N. Ramarao, D. Lereclus, and A. Givaudan, How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts, Current Opinion in Microbiology, vol.15, issue.3, pp.220-251, 2012.
DOI : 10.1016/j.mib.2012.04.006

URL : https://hal.archives-ouvertes.fr/hal-01004177

H. Bode, Entomopathogenic bacteria as a source of secondary metabolites, Current Opinion in Chemical Biology, vol.13, issue.2, pp.224-254, 2009.
DOI : 10.1016/j.cbpa.2009.02.037

D. Reimer, K. Pos, M. Thines, P. Grun, and H. Bode, A natural prodrug activation mechanism in nonribosomal peptide synthesis, Nature Chemical Biology, vol.71, issue.12, pp.888-90, 2011.
DOI : 10.1021/np800053n

J. Crawford, C. Portmann, R. Kontnik, C. Walsh, and J. Clardy, NRPS Substrate Promiscuity Diversifies the Xenematides, Organic Letters, vol.13, issue.19, pp.5144-5151, 2011.
DOI : 10.1021/ol2020237

URL : http://doi.org/10.1021/ol2020237

S. Fuchs, A. Proschak, T. Jaskolla, M. Karas, and H. Bode, Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila, Organic & Biomolecular Chemistry, vol.12, issue.9, pp.3130-3132, 2011.
DOI : 10.1016/j.chembiol.2005.08.010

M. Gualtieri, A. Aumelas, and J. Thaler, Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila, The Journal of Antibiotics, vol.78, issue.6, pp.295-302, 2009.
DOI : 10.1021/ja00268a061

URL : https://hal.archives-ouvertes.fr/hal-00378968

M. Riley, MOLECULAR MECHANISMS OF BACTERIOCIN EVOLUTION, Annual Review of Genetics, vol.32, issue.1, pp.255-78, 1998.
DOI : 10.1146/annurev.genet.32.1.255

M. Riley and J. Wertz, Bacteriocin diversity: ecological and evolutionary perspectives, Biochimie, vol.84, issue.5-6, pp.5-6357, 2002.
DOI : 10.1016/S0300-9084(02)01421-9

N. Morales-soto and S. Forst, The xnp1 P2-Like Tail Synthesis Gene Cluster Encodes Xenorhabdicin and Is Required for Interspecies Competition, Journal of Bacteriology, vol.193, issue.14, pp.3624-3656, 2011.
DOI : 10.1128/JB.00092-11

URL : http://jb.asm.org/content/193/14/3624.full.pdf

J. Thaler, S. Baghdiguian, and N. Boemare, Purification and Characterization of Xenorhabdicin, a Phage Tail-Like Bacteriocin, from the Lysogenic Strain F1 of Xenorhabdus-Nematophilus, Appl Environ Microbiol, vol.61, issue.5, pp.2049-52, 1995.

J. Singh and N. Banerjee, Transcriptional Analysis and Functional Characterization of a Gene Pair Encoding Iron-Regulated Xenocin and Immunity Proteins of Xenorhabdus nematophila, Journal of Bacteriology, vol.190, issue.11, pp.3877-85, 2008.
DOI : 10.1128/JB.00209-08

S. Schwarz, R. Hood, and J. Mougous, What is type VI secretion doing in all those bugs?, Trends in Microbiology, vol.18, issue.12, pp.531-538, 2010.
DOI : 10.1016/j.tim.2010.09.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991376

R. Hood, P. Singh, F. Hsu, T. Guvener, M. Carl et al., A Type VI Secretion System of Pseudomonas aeruginosa Targets a Toxin to Bacteria, Cell Host & Microbe, vol.7, issue.1, pp.25-37, 2010.
DOI : 10.1016/j.chom.2009.12.007

D. Macintyre, S. Miyata, M. Kitaoka, and S. Pukatzki, The Vibrio cholerae type VI secretion system displays antimicrobial properties, Proceedings of the National Academy of Sciences, vol.22, issue.12, pp.19520-19524, 2010.
DOI : 10.1038/nbt1037

J. Zheng, B. Ho, and J. Mekalanos, Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae, PLoS ONE, vol.166, issue.8, 2011.
DOI : 10.1371/journal.pone.0023876.s004

J. Chaston, G. Suen, S. Tucker, A. Andersen, A. Bhasin et al., The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes, PLoS ONE, vol.37, issue.11, p.22125637, 2011.
DOI : 10.1371/journal.pone.0027909.s023

URL : http://doi.org/10.1371/journal.pone.0027909

J. Ogier, S. Pages, G. Bisch, H. Chiapello, C. Medigue et al., Attenuated Virulence and Genomic Reductive Evolution in the Entomopathogenic Bacterial Symbiont Species

S. Aoki, S. Poole, C. Hayes, and D. Low, Toxin on a stick, Virulence, vol.6, issue.4, pp.356-365, 2011.
DOI : 10.1371/journal.ppat.1001068

URL : http://www.tandfonline.com/doi/pdf/10.4161/viru.2.4.16463?needAccess=true

C. Hayes, S. Koskiniemi, Z. Ruhe, S. Poole, and D. Low, Mechanisms and Biological Roles of Contact- Dependent Growth Inhibition Systems. Cold Spring Harb Perspect Med, 2014.

Z. Ruhe, D. Low, and C. Hayes, Bacterial contact-dependent growth inhibition, Trends in Microbiology, vol.21, issue.5, pp.230-237, 2013.
DOI : 10.1016/j.tim.2013.02.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648609

S. Aoki, E. Diner, C. De-roodenbeke, B. Burgess, S. Poole et al., A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria, Nature, vol.76, issue.7322, pp.439-481, 2010.
DOI : 10.1038/nature09490

Z. Ruhe, J. Nguyen, A. Chen, N. Leung, C. Hayes et al., CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism, PLOS Genetics, vol.127, issue.2, p.27355474, 2016.
DOI : 10.1371/journal.pgen.1006145.g007

URL : http://doi.org/10.1371/journal.pgen.1006145

Z. Ruhe, A. Wallace, D. Low, and C. Hayes, Receptor Polymorphism Restricts Contact-Dependent Growth Inhibition to Members of the Same Species, mBio, vol.4, issue.4, 2013.
DOI : 10.1128/mBio.00480-13

S. Aoki, R. Pamma, A. Hernday, J. Bickham, B. Braaten et al., Contact-Dependent Inhibition of Growth in Escherichia coli, Science, vol.309, issue.5738, pp.1245-1253, 2005.
DOI : 10.1126/science.1115109

C. Mercy, B. Ize, S. Salcedo, S. De-bentzmann, and S. Bigot, Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems, PLoS One, vol.11, issue.1, 2016.
DOI : 10.1371/journal.pone.0147435

URL : https://hal.archives-ouvertes.fr/hal-01458181

M. Anderson, E. Garcia, and P. Cotter, The Burkholderia bcpAIOB Genes Define Unique Classes of Two-Partner Secretion and Contact Dependent Growth Inhibition Systems, PLoS Genetics, vol.8, issue.8, 2012.
DOI : 10.1371/journal.pgen.1002877.s008

K. Nikolakakis, S. Amber, J. Wilbur, E. Diner, S. Aoki et al., The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems, Molecular Microbiology, vol.6, issue.3, pp.516-545, 2012.
DOI : 10.1186/1471-2180-6-46

A. Givaudan and A. Lanois, flhDC, the Flagellar Master Operon of Xenorhabdus nematophilus: Requirement for Motility, Lipolysis, Extracellular Hemolysis, and Full Virulence in Insects, Journal of Bacteriology, vol.182, issue.1, pp.107-122, 2000.
DOI : 10.1128/JB.182.1.107-115.2000

M. Chapelle, P. Girard, F. Cousserans, N. Volkoff, and B. Duvic, Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda, Molecular Immunology, vol.47, issue.2-3, 2009.
DOI : 10.1016/j.molimm.2009.09.028

P. Daborn, N. Waterfield, C. Silva, C. Au, S. Sharma et al., A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects, Proceedings of the National Academy of Sciences, vol.62, issue.3, pp.10742-10749, 2002.
DOI : 10.1016/S0002-9440(10)65235-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125031

R. Law, J. Hamlin, A. Sivro, S. Mccorrister, G. Cardama et al., A Functional Phenylacetic Acid Catabolic Pathway Is Required for Full Pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans Host Model, Journal of Bacteriology, vol.190, issue.21, pp.7209-7227, 2008.
DOI : 10.1128/JB.00481-08

C. Luberto, D. Toffaletti, E. Wills, S. Tucker, A. Casadevall et al., Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans, Genes & Development, vol.15, issue.2, pp.201-213, 2001.
DOI : 10.1101/gad.856001

H. Seth-smith, M. Fookes, C. Okoro, S. Baker, S. Harris et al., Structure, Diversity, and Mobility of the Salmonella Pathogenicity Island 7 Family of Integrative and Conjugative Elements within Enterobacteriaceae, Journal of Bacteriology, vol.194, issue.6, pp.1494-504, 2012.
DOI : 10.1128/JB.06403-11

G. Jubelin, S. Pagès, A. Lanois, M. Boyer, S. Gaudriault et al., Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection, Environmental Microbiology, vol.66, issue.5, pp.1271-84, 2011.
DOI : 10.1126/science.66.1709.302-a

G. Bisch, S. Pagès, J. Mcmullen, S. Stock, B. Duvic et al., Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects, Journal of Invertebrate Pathology, vol.124, pp.15-22, 2015.
DOI : 10.1016/j.jip.2014.10.002

J. Willett, Z. Ruhe, C. Goulding, D. Low, and C. Hayes, Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins, Journal of Molecular Biology, vol.427, issue.23, pp.3754-65
DOI : 10.1016/j.jmb.2015.09.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658273

V. Burrus and M. Waldor, Shaping bacterial genomes with integrative and conjugative elements, Research in Microbiology, vol.155, issue.5, pp.376-86, 2004.
DOI : 10.1016/j.resmic.2004.01.012

J. Guglielmini, L. Quintais, M. Garcillan-barcia, F. De-la-cruz, and E. Rocha, The Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation, PLoS Genetics, vol.22, issue.8, p.21876676, 2011.
DOI : 10.1371/journal.pgen.1002222.s002

URL : https://hal.archives-ouvertes.fr/pasteur-00647077

S. Poole, E. Diner, S. Aoki, B. Braaten, C. De-roodenbeke et al., Identification of Functional Toxin/Immunity Genes Linked to Contact-Dependent Growth Inhibition (CDI) and Rearrangement Hotspot (Rhs) Systems, PLoS Genetics, vol.29, issue.8, 2011.
DOI : 10.1371/journal.pgen.1002217.s010

R. Morse, K. Nikolakakis, J. Willett, E. Gerrick, D. Low et al., Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems, Proceedings of the National Academy of Sciences, vol.2, issue.9, pp.21480-21485, 2012.
DOI : 10.1038/nprot.2007.321

J. Webb, K. Nikolakakis, J. Willett, S. Aoki, C. Hayes et al., Delivery of CdiA Nuclease Toxins into Target Cells during Contact-Dependent Growth Inhibition, PLoS ONE, vol.317, issue.2, 2013.
DOI : 10.1371/journal.pone.0057609.s003

J. Willett, G. Gucinski, J. Fatherree, D. Low, and C. Hayes, Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways, Proceedings of the National Academy of Sciences, vol.269, issue.7, pp.11341-11347, 2015.
DOI : 10.1128/JB.00621-10

URL : http://www.pnas.org/content/112/36/11341.full.pdf