T. Svingen and P. Koopman, Building the mammalian testis: origins, differentiation, and assembly of the component cell populations, Genes & Development, vol.27, issue.22, pp.2409-2426, 2013.
DOI : 10.1101/gad.228080.113

K. Svechnikov, L. Landreh, J. Weisser, G. Izzo, E. Colón et al., Origin, Development and Regulation of Human Leydig Cells, Hormone Research in Paediatrics, vol.73, issue.2, pp.93-101, 2010.
DOI : 10.1159/000277141

H. Lejeune, F. Chuzel, T. Thomas, O. Avallet, R. Habert et al., Paracrine regulation of Leydig cells, Ann Endocrinol, vol.57, pp.55-63, 1996.

S. Moreno, B. Dutrillaux, and H. Coffigny, High sensitivity of rat foetal germ cells to low dose-rate irradiation, Int J Radiat Biol, vol.77, pp.529-538, 2001.

R. Lambrot, H. Coffigny, C. Pairault, C. Lécureuil, R. Frydman et al., High Radiosensitivity of Germ Cells in Human Male Fetus, The Journal of Clinical Endocrinology & Metabolism, vol.92, issue.7, pp.2632-2639, 2007.
DOI : 10.1210/jc.2006-2652

P. Hall and D. Lane, Tumour suppressors: A developing role for p53?, Current Biology, vol.7, issue.3, pp.144-147, 1997.
DOI : 10.1016/S0960-9822(97)70074-5

URL : http://doi.org/10.1016/s0960-9822(97)70074-5

A. Levine, R. Tomasini, F. Mckeon, T. Mak, and G. Melino, The p53 family: guardians of maternal reproduction, Nature Reviews Molecular Cell Biology, vol.82, issue.4, pp.259-265, 2011.
DOI : 10.1095/biolreprod.109.077925

F. Cavallo, D. Feldman, and M. Barchi, Revisiting DNA damage repair, p53-mediated apoptosis and cisplatin sensitivity in germ cell tumors, The International Journal of Developmental Biology, vol.57, issue.2-3-4, pp.273-280, 2013.
DOI : 10.1387/ijdb.130135mb

URL : http://www.ijdb.ehu.es/web/descarga/paper/130135mb

Y. Matsui, R. Nagano, and M. Obinata, Apoptosis of fetal testicular cells is regulated by both p53-dependent and independent mechanisms, Molecular Reproduction and Development, vol.352, issue.4, pp.399-405, 2000.
DOI : 10.1038/352345a0

T. Beumer, H. Roepers-gajadien, I. Gademan, P. Van-buul, G. Gil-gomez et al., The role of the tumor suppressor p53 in spermatogenesis, Cell Death and Differentiation, vol.5, issue.8, pp.669-677, 1998.
DOI : 10.1038/sj.cdd.4400396

A. Levine, p53, the Cellular Gatekeeper for Growth and Division, Cell, vol.88, issue.3, pp.323-331, 1997.
DOI : 10.1016/S0092-8674(00)81871-1

URL : http://doi.org/10.1016/s0092-8674(00)81871-1

C. Prives and P. Hall, The p53 pathway, The Journal of Pathology, vol.2, issue.1, pp.112-126, 1999.
DOI : 10.1128/MCB.10.12.6472

M. Lavin and N. Gueven, The complexity of p53 stabilization and activation, Cell Death and Differentiation, vol.123, issue.6, pp.941-950, 2006.
DOI : 10.4161/cc.4.8.1900

J. Marine and G. Lozano, Mdm2-mediated ubiquitylation: p53 and beyond, Cell Death and Differentiation, vol.7, issue.1, pp.93-102, 2010.
DOI : 10.4161/cc.7.19.6807

URL : http://www.nature.com/cdd/journal/v17/n1/pdf/cdd200968a.pdf

O. Montes-de, R. Luna, D. Wagner, and G. Lozano, Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53, Nature, vol.378, pp.203-206, 1995.

S. Jones, A. Roe, L. Donehower, and A. Bradley, Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53, Nature, vol.378, issue.6553, pp.206-208, 1995.
DOI : 10.1038/378206a0

C. Lécureuil, I. Fontaine, P. Crepieux, and F. Guillou, Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice, genesis, vol.51, issue.3, pp.114-118, 2002.
DOI : 10.1002/(SICI)1098-2795(199811)51:3<274::AID-MRD6>3.0.CO;2-M

S. Hilliard, K. Aboudehen, X. Yao, and S. El-dahr, Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching, Developmental Biology, vol.353, issue.2, pp.354-366, 2011.
DOI : 10.1016/j.ydbio.2011.03.017

J. Grier, S. Xiong, A. Elizondo-fraire, J. Parant, and G. Lozano, Tissue-Specific Differences of p53 Inhibition by Mdm2 and Mdm4, Molecular and Cellular Biology, vol.26, issue.1, pp.192-198, 2006.
DOI : 10.1128/MCB.26.1.192-198.2006

M. Lovell, C. Xie, S. Xiong, and W. Markesbery, Wilms??? tumor suppressor (WT1) is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer???s disease, Brain Research, vol.983, issue.1-2, pp.84-96, 2003.
DOI : 10.1016/S0006-8993(03)03032-4

L. Boesten, S. Zadelaar, D. Clercq, S. Francoz, S. Van-nieuwkoop et al., Mdm2, but not Mdm4, protects terminally differentiated smooth muscle cells from p53-mediated caspase-3-independent cell death, Cell Death and Differentiation, vol.3, issue.12, pp.2089-2098, 2006.
DOI : 10.1038/sj.cdd.4401398

W. Cao, J. Zhang, D. Feng, X. Liu, Y. Li et al., The effect of adenovirus-conjugated NDRG2 on p53-mediated apoptosis of hepatocarcinoma cells through attenuation of nucleotide excision repair capacity, Biomaterials, vol.35, issue.3, pp.993-1003, 2014.
DOI : 10.1016/j.biomaterials.2013.09.096

D. Schwartz, N. Goldfinger, and V. Rotter, Expression of p53 protein in spermatogenesis is confined to the tetraploid pachytene primary spermatocytes, Oncogene, vol.8, pp.1487-1494, 1993.

M. Hasegawa, Y. Zhang, H. Niibe, N. Terry, and M. Meistrich, Resistance of Differentiating Spermatogonia to Radiation-Induced Apoptosis and Loss in p53-Deficient Mice, Radiation Research, vol.149, issue.3, pp.263-270, 1998.
DOI : 10.2307/3579959

S. Socher, Y. Yin, W. Dewolf, and A. Morgentaler, Temperature-Mediated Germ Cell Loss in the Testis is Associated With Altered Expression of the Cell-Cycle Regulator p53, The Journal of Urology, vol.157, issue.5, pp.1986-1989, 1997.
DOI : 10.1016/S0022-5347(01)64915-2

R. Vergouwen, R. Huiskamp, R. Bas, H. Roepers-gajadien, J. Davids et al., Radiosensitivity of Testicular Cells in the Fetal Mouse, Radiation Research, vol.141, issue.1, pp.66-73, 1995.
DOI : 10.2307/3579091

S. Marino, M. Vooijs, H. Van-der-gulden, J. Jonkers, and A. Berns, Induction of medulloblastomas in p53?null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum, Genes Dev, vol.14, pp.994-1004, 2000.

X. Wu, R. Arumugam, S. Baker, and M. Lee, Pubertal and Adult Leydig Cell Function in Mullerian Inhibiting Substance-Deficient Mice, Endocrinology, vol.146, issue.2, pp.589-595, 2005.
DOI : 10.1210/en.2004-0646

URL : https://academic.oup.com/endo/article-pdf/146/2/589/10788662/endo0589.pdf

Y. Mishina, R. Rey, M. Finegold, M. Matzuk, N. Josso et al., Genetic analysis of the Mullerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation., Genes & Development, vol.10, issue.20, pp.2577-2587, 1996.
DOI : 10.1101/gad.10.20.2577

H. Yao, W. Whoriskey, and B. Capel, Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis, Genes & Development, vol.16, issue.11, pp.1433-1440, 2002.
DOI : 10.1101/gad.981202

URL : http://genesdev.cshlp.org/content/16/11/1433.full.pdf

R. Mitchell, W. Mungall, C. Mckinnell, R. Sharpe, L. Cruickshanks et al., Anogenital Distance Plasticity in Adulthood: Implications for Its Use as a Biomarker of Fetal Androgen Action, Endocrinology, vol.156, issue.1, pp.24-31, 2015.
DOI : 10.1210/en.2014-1534

K. Bay, K. Main, J. Toppari, and N. Skakkebaek, Testicular descent: INSL3, testosterone, genes and the intrauterine milieu, Nature Reviews Urology, vol.20, issue.4, pp.187-196, 2011.
DOI : 10.1371/journal.pcbi.1000788

J. Bowles, C. Feng, C. Spiller, T. Davidson, A. Jackson et al., FGF9 Suppresses Meiosis and Promotes Male Germ Cell Fate in Mice, Developmental Cell, vol.19, issue.3, pp.440-449, 2010.
DOI : 10.1016/j.devcel.2010.08.010

URL : http://doi.org/10.1016/j.devcel.2010.08.010

D. Rebourcet, O. Shaughnessy, P. Pitetti, J. Monteiro, A. et al., Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis, Development, vol.141, issue.10, pp.2139-2149, 2014.
DOI : 10.1242/dev.107029

URL : https://hal.archives-ouvertes.fr/hal-01129843

D. Rebourcet, O. Shaughnessy, P. Monteiro, A. Milne, L. Cruickshanks et al., Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis, PLoS ONE, vol.10, issue.8, p.105687, 2014.
DOI : 10.1371/journal.pone.0105687.s004

URL : https://hal.archives-ouvertes.fr/hal-01129868

J. Grier, Y. W. Lozano, and G. , Conditional allele ofmdm2 which encodes a p53 inhibitor, genesis, vol.362, issue.2, pp.145-147, 2002.
DOI : 10.1038/362857a0

T. Jacks, R. L. Williams, B. Schmitt, E. Halachmi, S. Bronson et al., Tumor spectrum analysis in p53-mutant mice, Current Biology, vol.4, issue.1, pp.1-7, 1994.
DOI : 10.1016/S0960-9822(00)00002-6

C. Lécureuil, M. Saleh, I. Fontaine, B. Baron, M. Zakin et al., Transgenic mice as a model to study the regulation of human transferrin expression in Sertoli cells, Human Reproduction, vol.19, issue.6, pp.1300-1307, 2004.
DOI : 10.1093/humrep/deh297

O. Montes-de, R. Luna, A. Tabor, H. Eberspaecher, D. Hulboy et al., The organization and expression of the mdm2 gene, Genomics, vol.33, pp.352-357, 1996.

B. Fumel, M. Guerquin, G. Livera, C. Staub, M. Magistrini et al., Thyroid Hormone Limits Postnatal Sertoli Cell Proliferation In Vivo by Activation of Its Alpha1 Isoform Receptor (TRalpha1) Present in These Cells and by Regulation of Cdk4/JunD/c-myc mRNA Levels in Mice1, Biology of Reproduction, vol.87, issue.1, pp.1-9, 2012.
DOI : 10.1095/biolreprod.111.098418

URL : https://hal.archives-ouvertes.fr/hal-01129659

G. Livera, G. Delbes, C. Pairault, V. Rouiller-fabre, and R. Habert, Organotypic culture, a powerful model for studying rat and mouse fetal testis development, Cell and Tissue Research, vol.234, issue.3, pp.507-528, 2006.
DOI : 10.1002/(SICI)1097-0185(20000201)258:2<210::AID-AR10>3.0.CO;2-X