Plant and fungal cytochrome P450's: their role in pesticide transformation

Christian P. Mougin

INRA, Unité de Phytopharmacie et Médiateurs Chimiques Route de Saint-Cyr, F-78026 Versailles Cedex email: mougin@versailles.inra.fr

Pesticides and Environment

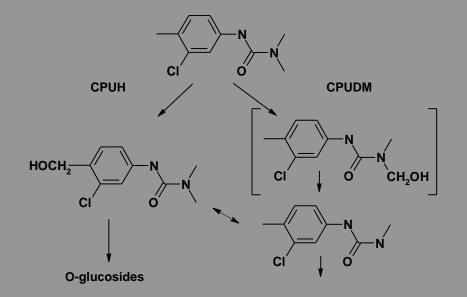
Fate of xenobiotics in the soil

• Transfer of xenobiotics: Dr. V. Chaplain

• Biotransformation of xenobiotics: Dr. C. Mougin

keywords: bioavailability, biotransformation, bioremediation filamentous fungi, enzymes, polymers, soil, xenobiotics

- Properties and functions of plant and fungal P450s
- Role of plant P450s in herbicide metabolism and selectivity
- Fungal P450s as tools for bioremediation
- Concluding remarks


Plant and fungal P450s: properties

	Similarities		Divergences		
Localization	Microsomes	F	soluble		
Structure	P450 + CPR	F	P450-CPR		
Cofactors	NADPH + O ₂	Р	ROOH		
Induction	Physicochemical Physiological Xenobiotics	F	?		
Inhibition	Haem ligands Mechanism-based	F	?		

Plant and fungal P450s: functions

	Similarities	Dive	ergences
Reactions	Hydroxylations Dealkylations		
Physiological substrates	Steroids n-Alkanes Fatty acids		
Xenobiotics	PAHs Pesticides	F	?

Chlorotoluron metabolization pathway in plants

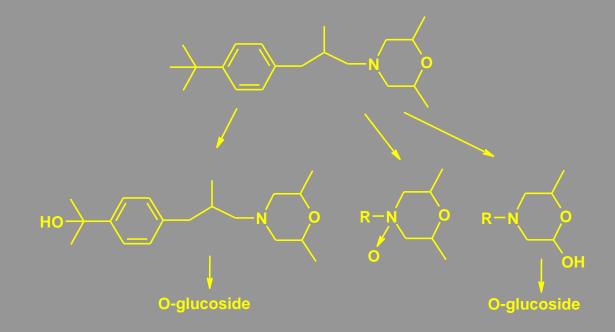
Effect of metabolism on chlorotoluron selectivity

	Wheat	Veronica	Alopecurus
Herbicide half-life	25 hours	6 hours	> 25 hours
Main metabolite	Hydroxylated	di- <i>N</i> -demethyl.	mono- <i>N</i> -demethyl.
Phytotoxicity	no	no	high

Effect of P450 effectors on chlorotoluron metabolism in wheat

	Inducers-Safeners	Inhibitors-Synergists
Whole plant		ABT Piperonyl butoxide
Cell cultures	2,4-D Cyometrinil Procloraz	ABT Paclobutrazol
Microsomes	2,4-D Cyometrinil Procloraz Chlorotoluron	ABT Piperonyl butoxide Procloraz

Inhibition of chlorotoluron metabolism by P450 inhibitors


% of inhibition

Inhibitors		Wheat		Veronica	
		CPUH	CPUDM	CPUH	CPUDM
CO		50	35	75	98
Tetcyclacis	10 μΜ 100 μΜ	20 60	10 40	74 99	45 80
ABT	10 μΜ 100 μΜ	74 100	57 100	0 35	0 7

Conclusions

- Several P450s may be involved in the metabolism of a given pesticide within a single species
- Interspecific differences exist regarding P450 inhibition and induction in crops and weeds
- P450s play an important part in herbicide selectivity and resistance
- P450 could be targets to herbicide resistance engineering by chemical or genetic approaches

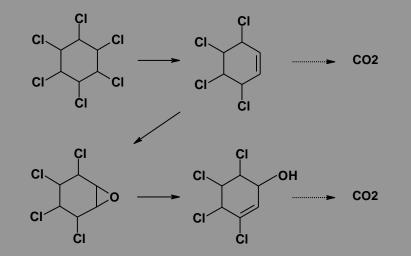
Fenpropimorph metabolization pathway in wheat

Effect of agrochemicals on wheat growth and sterol content

	Growth (%)	Sterols (%)		
		Normal	Abnormal	
Control	100.0	94.2	5.8	
Fenp.	65.2	9.2	90.8	
Fenp. + ABT	74.9	9.4	90.6	Accumulation in roots
Fenp. + Napht.	60.0	25.3	74.6	Depletion in leaves

Effect of agrochemicals on wheat P450 content

Agrochemicals	P450 (pmoles / mg)
Control (water)	113
Fenpropimorph	196
Fenp. + PBO	160
Fenp. + naphthalic anhydride	302
Fenp. + ABT	130
Fenp. + tetcyclacis	138
Fenp. + clofibrate	340


Involvement of P450s in fenpropimorph metabolism

- Fenpropimorph was converted to an oxygenated metabolite
- In microsomal fractions in the presence of NADPH
- Carbon monoxide bubbling inhibited the reaction
- Naphthalic anhydride and fenpropimorph itself stimulated the reaction

Conclusions

- The fungicide fenpropimorph can modify the growth and the sterol content of the host plant
- These adverse effects are modulated by agrochemicals known as P450 effectors
- The agrochemicals modify also the plant microsomal P450 content
- The fungicide is oxygenated by a P450 system

Lindane metabolization pathway in *P. chrysosporium*

Wheat bran pellets overgrown with *T. versicolor*

Effects of ABT and phenobarbital on metabolite and lindane contents in cultures of *P. chrysosporium* after 12-day incubations

	Relative abundance (%)				
	TCCOL				
	Unretained	Minor	TCCE	тссн	Lindane
Controls	34.3	8.5	3.1	4.3	49.8
ABT (10 ⁻³ M)	11.6	0.0	0.0	0.0	88.4
PB (10 ⁻² M)	37.9	1.1	5.2	0.0	55.8

Conclusions

- Metabolism of pesticides, such as lindane and atrazine, appears mediated by P450s in filamentous fungi cultured in liquid media
- Filamentous fungi can be easily inoculated into soils and well grow
- Filamentous fungi act as synergists of indigenous degraders
- Fungal efficiency remains limited by pesticide bioavailability

Concluding remarks

- P450s are widely involved in pesticide metabolism in plants and fungi
- An undestanding of the mechanisms regulating pesticide metabolism, with implications in herbicide selectivity, cross-resistance or bioremediation will require:

The isolation and functional characterization of the P450 encoding genes and/or The genetic engineering of already available genes

Manipulation of P450 enzymes is a promising long-term challenge

Our partners

Plant P450s

R. Scalla, M.-F. Corio-Costet, F. Durst, D. Werck-Reichhart

Fungal P450s

M. Asther, P. Leroux